Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Open Vet J ; 14(5): 1154-1160, 2024 May.
Article in English | MEDLINE | ID: mdl-38938421

ABSTRACT

Background: Oxygen deprivation (OD) is a critical condition that can lead to brain damage and even death. Current hypoxia management approaches are limited in effectiveness. Centella asiatica (CA), known for its neuroprotective properties, offers a potential alternative for OD treatment. Aims: This study aims to investigate the neuroprotective effects of CA on the expression of brain-derived neurotrophic factor (BDNF) and vesicular glutamate transporter 1 (VGLUT1) in zebrafish larvae under oxygen-deficient conditions. Methods: Zebrafish embryos were subjected to low oxygen levels (1.5 mg/l) 0-2 hours post-fertilization (hpf) until 3 days post-fertilization (dpf), simulating the early stages of OD. Subsequent treatment involved varying concentrations of CA (1.25-5 µg/ml) up to 9 days post-fertilization. The expression levels of BDNF and VGLUT1 were measured using PCR methods. Statistical analysis was conducted using a two-way analysis of variance to evaluate the impact of CA on the expression of BDNF and VGLUT1 in zebrafish larvae aged 3 and 9 dpf in oxygen-deprived conditions. Results: CA significantly influenced the expression of BDNF and VGLUT1 under OD (p < 0.001). An increase in BDNF expression (p < 0.001) and a decrease in VGLUT1 (p < 0.01) were observed in zebrafish larvae experiencing OD and treated with CA. There was no significant difference in BDNF and VGLUT1 expression across age variations in zebrafish larvae at 3 dpf and 9 dpf in the treatment groups (p > 0.05). CA concentration of 2.5 µg/ml effectively enhanced BDNF and reduced VGLUT1 in 3-9 dpf zebrafish larvae. Conclusion: CA demonstrates potential as a neuroprotective agent, modulating increased BDNF expression and reduced VGLUT1 under OD conditions. These findings lay a foundation for further research in developing therapies for oxygen deficiency.


Subject(s)
Brain-Derived Neurotrophic Factor , Centella , Larva , Plant Extracts , Triterpenes , Zebrafish , Animals , Centella/chemistry , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Larva/drug effects , Larva/growth & development , Triterpenes/pharmacology , Triterpenes/administration & dosage , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Neuroprotective Agents/pharmacology , Oxygen/metabolism , Fish Diseases/chemically induced , Fish Diseases/drug therapy , Hypoxia/veterinary , Hypoxia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...