Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inherit Metab Dis ; 47(4): 766-777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38597022

ABSTRACT

ALG3-CDG is a rare congenital disorder of glycosylation (CDG) with a clinical phenotype that includes neurological manifestations, transaminitis, and frequent infections. The ALG3 enzyme catalyzes the first step of endoplasmic reticulum (ER) luminal glycan extension by adding mannose from Dol-P-Man to Dol-PP-Man5GlcNAc2 (Man5) forming Dol-PP-Man6. Such glycan extension is the first and fastest cellular response to ER stress, which is deficient in ALG3-CDG. In this study, we provide evidence that the unfolded protein response (UPR) and ER-associated degradation activities are increased in ALG3-CDG patient-derived cultured skin fibroblasts and there is constitutive activation of UPR mediated by the IRE1-α pathway. In addition, we show that N-linked Man3-4 glycans are increased in cellular glycoproteins and secreted plasma glycoproteins with hepatic or non-hepatic origin. We found that like other CDGs such as ALG1- or PMM2-CDG, in transferrin, the assembling intermediate Man5 in ALG3-CDG, are likely further processed into a distinct glycan, NeuAc1Gal1GlcNAc1Man3GlcNAc2, probably by Golgi mannosidases and glycosyltransferases. We predict it to be a mono-antennary glycan with the same molecular weight as the truncated glycan described in MGAT2-CDG. In summary, this study elucidates multiple previously unrecognized biochemical consequences of the glycan extension deficiency in ALG3-CDG which will have important implications in the pathogenesis of CDG.


Subject(s)
Congenital Disorders of Glycosylation , Endoplasmic Reticulum Stress , Fibroblasts , Mannosyltransferases , Polysaccharides , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Humans , Polysaccharides/metabolism , Mannosyltransferases/genetics , Mannosyltransferases/metabolism , Fibroblasts/metabolism , Unfolded Protein Response , Endoplasmic Reticulum/metabolism , Glycosylation , Cells, Cultured , Endoplasmic Reticulum-Associated Degradation
2.
J Inherit Metab Dis ; 44(4): 1001-1012, 2021 07.
Article in English | MEDLINE | ID: mdl-33734437

ABSTRACT

Pathogenic variants in ALG13 (ALG13 UDP-N-acetylglucosaminyltransferase subunit) cause an X-linked congenital disorder of glycosylation (ALG13-CDG) where individuals have variable clinical phenotypes that include developmental delay, intellectual disability, infantile spasms, and epileptic encephalopathy. Girls with a recurrent de novo c.3013C>T; p.(Asn107Ser) variant have normal transferrin glycosylation. Using a highly sensitive, semi-quantitative flow injection-electrospray ionization-quadrupole time-of-flight mass spectrometry (ESI-QTOF/MS) N-glycan assay, we report subtle abnormalities in N-glycans that normally account for <0.3% of the total plasma glycans that may increase up to 0.5% in females with the p.(Asn107Ser) variant. Among our 11 unrelated ALG13-CDG individuals, one male had abnormal serum transferrin glycosylation. We describe seven previously unreported subjects including three novel variants in ALG13 and report a milder neurodevelopmental course. We also summarize the molecular, biochemical, and clinical data for the 53 previously reported ALG13-CDG individuals. We provide evidence that ALG13 pathogenic variants may mildly alter N-linked protein glycosylation in both female and male subjects, but the underlying mechanism remains unclear.


Subject(s)
Congenital Disorders of Glycosylation/genetics , Intellectual Disability/physiopathology , N-Acetylglucosaminyltransferases/genetics , Congenital Disorders of Glycosylation/physiopathology , Female , Genetic Variation , Glycosylation , Humans , Intellectual Disability/genetics , Male , Phenotype , Transferrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...