Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 423(Pt A): 127005, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34479080

ABSTRACT

The excessive cost, unsustainability or complex production of new highly selective electrocatalysts for H2O2 production, especially noble-metal-based ones, is prohibitive in the water treatment sector. To solve this conundrum, biomass-derived carbons with adequate textural properties were synthesized via agarose double-step pyrolysis followed by steam activation. A longer steam treatment enhanced the graphitization and porosity, even surpassing commercial carbon black. Steam treatment for 20 min yielded the greatest surface area (1248 m2 g-1), enhanced the mesopore/micropore volume distribution and increased the activity (E1/2 = 0.609 V) and yield of H2O2 (40%) as determined by RRDE. The upgraded textural properties had very positive impact on the ability of the corresponding gas-diffusion electrodes (GDEs) to accumulate H2O2, reaching Faradaic current efficiencies of ~95% at 30 min. Acidic solutions of ß-blocker acebutolol were treated by photoelectro-Fenton (PEF) process in synthetic media with and without chloride. In urban wastewater, total drug disappearance was reached at 60 min with almost 50% mineralization after 360 min at only 10 mA cm-2. Up to 14 degradation products were identified in the Cl--containing medium.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Acebutolol , Chlorides , Electrodes , Iron , Oxidation-Reduction , Sepharose , Water Pollutants, Chemical/analysis
2.
ACS Appl Mater Interfaces ; 13(36): 42693-42705, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34468127

ABSTRACT

Nitrogen doping has been always regarded as one of the major factors responsible for the increased catalytic activity of Fe-N-C catalysts in the oxygen reduction reaction, and recently, sulfur has emerged as a co-doping element capable of increasing the catalytic activity even more because of electronic effects, which modify the d-band center of the Fe-N-C catalysts or because of its capability to increase the Fe-Nx site density (SD). Herein, we investigate in detail the effect of sulfur doping of carbon support on the Fe-Nx site formation and on the textural properties (micro- and mesopore surface area and volume) in the resulting Fe-N-C catalysts. The Fe-N-C catalysts were prepared from mesoporous carbon with tunable sulfur doping (0-16 wt %), which was achieved by the modulation of the relative amount of sucrose/dibenzothiophene precursors. The carbon with the highest sulfur content was also activated through steam treatment at 800 °C for different durations, which allowed us to modulate the carbon pore volume and surface area (1296-1726 m2 g-1). The resulting catalysts were tested in O2-saturated 0.5 M H2SO4 electrolyte, and the site density (SD) was determined using the NO-stripping technique. Here, we demonstrate that sulfur doping has a porogenic effect increasing the microporosity of the carbon support, and it also facilitates the nitrogen fixation on the carbon support as well as the formation of Fe-Nx sites. It was found that the Fe-N-C catalytic activity [E1/2 ranges between 0.609 and 0.731 V vs reversible hydrogen electrode (RHE)] does not directly depend on sulfur content, but rather on the microporous surface and therefore any electronic effect appears not to be determinant as confirmed by X-ray photoemission spectroscopy (XPS). The graph reporting Fe-Nx SD versus sulfur content assumes a volcano-like shape, where the maximum value is obtained for a sulfur/iron ratio close to 18, i.e., a too high or too low sulfur doping has a detrimental effect on Fe-Nx formation. However, it was highlighted that the increase of Fe-Nx SD is a necessary but not sufficient condition for increasing the catalytic activity of the material, unless the textural properties are also optimized, i.e., there must be an optimized hierarchical porosity that facilitates the mass transport to the active sites.

3.
Chemistry ; 27(3): 1002-1014, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-32955796

ABSTRACT

Carbon materials slightly doped with heteroatoms such as nitrogen (N-RFC) or sulfur (S-RFC) are investigated as active catalysts for the electrochemical bielectronic oxygen reduction reaction (ORR) to H2 O2 . Mesoporous carbons with wide, accessible pores were prepared by pyrolysis of a resorcinol-formaldehyde resin using a PEO-b-PS block copolymer as a sacrificial templating agent and the nitrogen and sulfur doping were accomplished in a second thermal treatment employing 1,10-phenanthroline and dibenzothiophene as nitrogen and sulfur precursors, respectively. The synthetic strategy allowed to obtain carbon materials with very high surface area and mesopore volume without any further physicochemical post treatment. Voltammetric rotating ring-disk measurements in combination with potentiostatic and galvanostatic bulk electrolysis measurements in 0.5 m H2 SO4 demonstrated a pronounced effect of heteroatom doping and mesopores volume on the catalytic activity and selectivity for H2 O2 . N-RFC electrode was employed as electrode material in a 45 h electrolysis showing a constant H2 O2 production of 298 mmol g-1 h-1 (millimoles of H2 O2 divided by mass of catalyst and electrolysis time), with a faradic efficiency (FE) up to 61 % and without any clear evidence of degradation. The undoped carbon RFC showed a lower production rate (218 mmol g-1 h-1 ) but a higher FE of 76 %, while the performances drastically dropped when S-RFC (production rate 11 mmol g-1 h-1 and FE=39 %) was used.

SELECTION OF CITATIONS
SEARCH DETAIL
...