Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Cell Neurosci ; 12: 449, 2018.
Article in English | MEDLINE | ID: mdl-30542267

ABSTRACT

Metabotropic glutamate receptors (mGlus) are G Protein coupled-receptors that modulate synaptic transmission and plasticity in the central nervous system. Some act as autoreceptors to control neurotransmitter release at excitatory synapses and have become attractive targets for drug therapy to treat certain neurological disorders. However, the high degree of sequence conservation around the glutamate binding site makes the development of subtype-specific orthosteric ligands difficult to achieve. This problem can be circumvented by designing molecules that target specific less well conserved allosteric sites. One such allosteric drug, the photo-switchable compound OptoGluNAM4.1, has been recently employed to reversibly inhibit the activity of metabotropic glutamate 4 (mGlu4) receptors in cell cultures and in vivo. We studied OptoGluNAM4.1 as a negative modulator of neurotransmission in rodent cerebellar slices at the parallel fiber - Purkinje cell synapse. Our data show that OptoGluNAM4.1 antagonizes pharmacological activation of mGlu4 receptors in a fully reversible and photo-controllable manner. In addition, for the first time, this new allosteric modulator allowed us to demonstrate that, in brain slices from the rodent cerebellar cortex, mGlu4 receptors are endogenously activated in excitotoxic conditions, such as the early phases of simulated cerebellar ischemia, which is associated with elevated levels of extracellular glutamate. These findings support OptoGluNAM4.1 as a promising new tool for unraveling the role of mGlu4 receptors in the central nervous system in physio-pathological conditions.

2.
Dis Model Mech ; 11(7)2018 07 10.
Article in English | MEDLINE | ID: mdl-29895670

ABSTRACT

Recent emphasis has been placed on the role that cerebellar dysfunctions could have in the genesis of cognitive deficits in Duchenne muscular dystrophy (DMD). However, relevant genotype-phenotype analyses are missing to define whether cerebellar defects underlie the severe cases of intellectual deficiency that have been associated with genetic loss of the smallest product of the dmd gene, the Dp71 dystrophin. To determine for the first time whether Dp71 loss could affect cerebellar physiology and functions, we have used patch-clamp electrophysiological recordings in acute cerebellar slices and a cerebellum-dependent behavioral test battery addressing cerebellum-dependent motor and non-motor functions in Dp71-null transgenic mice. We found that Dp71 deficiency selectively enhances excitatory transmission at glutamatergic synapses formed by climbing fibers (CFs) on Purkinje neurons, but not at those formed by parallel fibers. Altered basal neurotransmission at CFs was associated with impairments in synaptic plasticity and clustering of the scaffolding postsynaptic density protein PSD-95. At the behavioral level, Dp71-null mice showed some improvements in motor coordination and were unimpaired for muscle force, static and dynamic equilibrium, motivation in high-motor demand and synchronization learning. Dp71-null mice displayed altered strategies in goal-oriented navigation tasks, however, suggesting a deficit in the cerebellum-dependent processing of the procedural components of spatial learning, which could contribute to the visuospatial deficits identified in this model. In all, the observed deficits suggest that Dp71 loss alters cerebellar synapse function and cerebellum-dependent navigation strategies without being detrimental for motor functions.


Subject(s)
Cerebellum/metabolism , Dystrophin/deficiency , Motor Activity , Synapses/metabolism , Animals , Biomechanical Phenomena , Cerebellum/physiopathology , Dystrophin/metabolism , Exploratory Behavior , Genotype , Glutamic Acid/metabolism , Male , Maze Learning , Mice, Inbred C57BL , Mice, Knockout , Motivation , Neuronal Plasticity , Purkinje Cells/metabolism , Synaptic Transmission
3.
J Med Chem ; 61(5): 1969-1989, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29397723

ABSTRACT

A group III metabotropic glutamate (mGlu) receptor agonist (PCEP) was identified by virtual HTS. This orthosteric ligand is composed by an l-AP4-derived fragment that mimics glutamate and a chain that binds into a neighboring pocket, offering possibilities to improve affinity and selectivity. Herein we describe a series of derivatives where the distal chain is replaced by an aromatic or heteroaromatic group. Potent agonists were identified, including some with a mGlu4 subtype preference, e.g., 17m (LSP1-2111) and 16g (LSP4-2022). Molecular modeling suggests that aromatic functional groups may bind at either one of the two chloride regulatory sites. These agonists may thus be considered as particular bitopic/dualsteric ligands. 17m was shown to reduce GABAergic synaptic transmission at striatopallidal synapses. We now demonstrate its inhibitory effect at glutamatergic parallel fiber-Purkinje cell synapses in the cerebellar cortex. Although these ligands have physicochemical properties that are markedly different from typical CNS drugs, they hold significant therapeutic potential.


Subject(s)
Binding Sites , Receptors, Metabotropic Glutamate/agonists , Aminobutyrates/pharmacology , Animals , Glutamic Acid/chemistry , Humans , Ligands , Models, Molecular , Molecular Mimicry , Phosphinic Acids/pharmacology , Purkinje Cells/ultrastructure , Synapses/drug effects , Synaptic Transmission/drug effects
4.
Nat Commun ; 8(1): 1967, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29213077

ABSTRACT

Antibodies have enormous therapeutic and biotechnology potential. G protein-coupled receptors (GPCRs), the main targets in drug development, are of major interest in antibody development programs. Metabotropic glutamate receptors are dimeric GPCRs that can control synaptic activity in a multitude of ways. Here we identify llama nanobodies that specifically recognize mGlu2 receptors, among the eight subtypes of mGluR subunits. Among these nanobodies, DN10 and 13 are positive allosteric modulators (PAM) on homodimeric mGlu2, while DN10 displays also a significant partial agonist activity. DN10 and DN13 have no effect on mGlu2-3 and mGlu2-4 heterodimers. These PAMs enhance the inhibitory action of the orthosteric mGlu2/mGlu3 agonist, DCG-IV, at mossy fiber terminals in the CA3 region of hippocampal slices. DN13 also impairs contextual fear memory when injected in the CA3 region of hippocampal region. These data highlight the potential of developing antibodies with allosteric actions on GPCRs to better define their roles in vivo.


Subject(s)
Fear/physiology , Hippocampus/metabolism , Receptors, Metabotropic Glutamate/metabolism , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Binding Sites , Camelids, New World , Cyclic AMP/metabolism , Cyclopropanes , Glutamic Acid/blood , Glutamic Acid/metabolism , Glycine/analogs & derivatives , HEK293 Cells , Hippocampus/drug effects , Humans , Inositol Phosphates/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Neurons/physiology , Receptors, Opioid
5.
Front Cell Neurosci ; 11: 349, 2017.
Article in English | MEDLINE | ID: mdl-29163059

ABSTRACT

During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD). Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts.

6.
Neuropharmacology ; 121: 247-260, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28456688

ABSTRACT

In cerebellar cortex, mGlu4 receptors located on parallel fibers play an essential role in normal motor function, but the molecular mechanisms involved are not yet completely understood. Using a strategy combining biochemical and electrophysiological approaches in the rodent cerebellum, we demonstrate that presynaptic mGlu4 receptors control synaptic transmission through an atypical activation of Gαq proteins. First, the Gαq subunit, PLC and PKC signaling proteins present in cerebellar extracts are retained on affinity chromatography columns grafted with different sequences of the cytoplasmic domain of mGlu4 receptor. The i2 loop and the C terminal domain were used as baits, two domains that are known to play a pivotal role in coupling selectivity and efficacy. Second, in situ proximity ligation assays show that native mGlu4 receptors and Gαq subunits are in close physical proximity in cerebellar cortical slices. Finally, electrophysiological experiments demonstrate that the molecular mechanisms underlying mGlu4 receptor-mediated inhibition of transmitter release at cerebellar Parallel Fiber (PF) - Molecular Layer Interneuron (MLI) synapses involves the Gαq-PLC signaling pathway. Taken together, our results provide compelling evidence that, in the rodent cerebellar cortex, mGlu4 receptors act by coupling to the Gαq protein and PLC effector system to reduce glutamate synaptic transmission.


Subject(s)
Cerebellar Cortex/cytology , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction/physiology , Synaptic Transmission/physiology , Animals , Animals, Newborn , Benzopyrans/pharmacology , Cytoplasm/metabolism , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Agents/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Nerve Net/drug effects , Propionates/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/genetics , Signal Transduction/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/genetics
7.
J Physiol ; 590(13): 2977-94, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22570379

ABSTRACT

In the rodent cerebellum, pharmacological activation of mGluR4 acutely depresses excitatory synaptic transmission at parallel fibre­Purkinje cell synapses. This depression involves the inhibition of presynaptic calcium (Ca2+) influx that ultimately controls glutamate release. In this study, we investigate the molecular basis of mGluR4-mediated inhibition of presynaptic Ca2+ transients. Our results demonstrate that the mGluR4 effect does not depend on selective inhibition of a specific type of presynaptic voltage-gated Ca2+ channel, but rather involves modulation of all classes of Ca2+ channels present in the presynaptic terminals. In addition, this inhibitory effect does not involve the activation of G protein-activated inwardly rectifying potassium channels, TEA-sensitive potassium channels or two-pore-domain potassium channels. Furthermore, this inhibition does not require pertussis toxin-sensitive G proteins, and is independent of any effect on adenylyl cyclases, protein kinase A, mitogen-activated protein kinases or phosphoinositol-3 kinase activity. Interestingly we found that mGluR4 inhibition of presynaptic Ca2+ influx employs a newly defined signalling pathway, notably that involving the activation of phospholipase C and ultimately protein kinase C.


Subject(s)
Cerebellar Cortex/physiology , Receptors, Metabotropic Glutamate/physiology , Animals , Calcium/physiology , Calcium Channels/physiology , In Vitro Techniques , Male , Protein Kinase C/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction , Synaptic Transmission , Type C Phospholipases/physiology
8.
J Biol Chem ; 287(24): 20176-86, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22528491

ABSTRACT

The eight pre- or/and post-synaptic metabotropic glutamatergic receptors (mGluRs) modulate rapid excitatory transmission sustained by ionotropic receptors. They are classified in three families according to their percentage of sequence identity and their pharmacological properties. mGluR4 belongs to group III and is mainly localized presynaptically. Activation of group III mGluRs leads to depression of excitatory transmission, a process that is exclusively provided by mGluR4 at parallel fiber-Purkinje cell synapse in rodent cerebellum. This function relies at least partly on an inhibition of presynaptic calcium influx, which controls glutamate release. To improve the understanding of molecular mechanisms of the mGluR4 depressant effect, we decided to identify the proteins interacting with this receptor. Immunoprecipitations using anti-mGluR4 antibodies were performed with cerebellar extracts. 183 putative partners that co-immunoprecipitated with anti-mGluR4 antibodies were identified and classified according to their cellular functions. It appears that native mGluR4 interacts with several exocytosis proteins such as Munc18-1, synapsins, and syntaxin. In addition, native mGluR4 was retained on a Sepharose column covalently grafted with recombinant Munc18-1, and immunohistochemistry experiments showed that Munc18-1 and mGluR4 colocalized at plasma membrane in HEK293 cells, observations in favor of an interaction between the two proteins. Finally, affinity chromatography experiments using peptides corresponding to the cytoplasmic domains of mGluR4 confirmed the interaction observed between mGluR4 and a selection of exocytosis proteins, including Munc18-1. These results could give indications to explain how mGluR4 can modulate glutamate release at parallel fiber-Purkinje cell synapses in the cerebellum in addition to the inhibition of presynaptic calcium influx.


Subject(s)
Calcium/metabolism , Exocytosis/physiology , Purkinje Cells/metabolism , Receptors, Metabotropic Glutamate/metabolism , Synapses/metabolism , Animals , HEK293 Cells , Humans , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Purkinje Cells/cytology , Purkinje Fibers/cytology , Purkinje Fibers/metabolism , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Rats , Synapses/genetics , Synapsins/genetics , Synapsins/metabolism
9.
FASEB J ; 26(4): 1682-93, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22223752

ABSTRACT

Metabotropic glutamate (mGlu) receptors are promising targets to treat numerous brain disorders. So far, allosteric modulators are the only subtype selective ligands, but pure agonists still have strong therapeutic potential. Here, we aimed at investigating the possibility of developing subtype-selective agonists by extending the glutamate-like structure to hit a nonconsensus binding area. We report the properties of the first mGlu4-selective orthosteric agonist, derived from a virtual screening hit, LSP4-2022 using cell-based assays with recombinant mGlu receptors [EC(50): 0.11 ± 0.02, 11.6 ± 1.9, 29.2 ± 4.2 µM (n>19) in calcium assays on mGlu4, mGlu7, and mGlu8 receptors, respectively, with no activity at the group I and -II mGlu receptors at 100 µM]. LSP4-2022 inhibits neurotransmission in cerebellar slices from wild-type but not mGlu4 receptor-knockout mice. In vivo, it possesses antiparkinsonian properties after central or systemic administration in a haloperidol-induced catalepsy test, revealing its ability to cross the blood-brain barrier. Site-directed mutagenesis and molecular modeling was used to identify the LSP4-2022 binding site, revealing interaction with both the glutamate binding site and a variable pocket responsible for selectivity. These data reveal new approaches for developing selective, hydrophilic, and brain-penetrant mGlu receptor agonists, offering new possibilities to design original bioactive compounds with therapeutic potential.


Subject(s)
Excitatory Amino Acid Agonists/chemistry , Excitatory Amino Acid Agonists/pharmacology , Ligands , Phosphinic Acids/chemistry , Phosphinic Acids/pharmacology , Receptors, Metabotropic Glutamate/agonists , Animals , Antiparkinson Agents/chemistry , Antiparkinson Agents/metabolism , Antiparkinson Agents/pharmacology , Binding Sites , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Molecular Structure , Mutagenesis, Site-Directed , Patch-Clamp Techniques , Phosphinic Acids/metabolism , Rats , Rats, Wistar , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Synaptic Transmission/drug effects
10.
Glia ; 59(12): 1800-12, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21830236

ABSTRACT

Astrocytes constitute active networks of intercommunicating cells that support the metabolism and the development of neurons and affect synaptic functions via multiple pathways. ATP is one of the major neurotransmitters mediating signaling between neurons and astrocytes. Potentially acting through both purinergic metabotropic P2Y receptors (P2YRs) and ionotropic P2X receptors (P2XRs), up until now ATP has only been shown to activate P2YRs in Bergmann cells, the radial glia of the cerebellar cortex that envelopes Purkinje cell afferent synapses. In this study, using multiple experimental approaches in acute cerebellar slices we demonstrate the existence of functional P2XRs on Bergmann cells. In particular, we show here that Bergmann cells express uniquely P2X7R subtypes: (i) immunohistochemical analysis revealed the presence of P2X7Rs on Bergmann cell processes, (ii) in whole cell recordings P2XR pharmacological agonists induced depolarizing currents that were blocked by specific antagonists of P2X7Rs, and could not be elicited in slices from P2X7R-deficient mice and finally, (iii) calcium imaging experiments revealed two distinct calcium signals triggered by application of exogenous ATP: a transient signal deriving from release of calcium from intracellular stores, and a persistent one following activation of P2X7Rs. Our data thus reveal a new pathway by which extracellular ATP may affect glial cell function, thus broadening our knowledge on purinergic signaling in the cerebellum.


Subject(s)
Cerebellum/metabolism , Neuroglia/metabolism , Receptors, Purinergic P2X7/biosynthesis , Receptors, Purinergic P2X7/genetics , Signal Transduction/physiology , Animals , Calcium Signaling/genetics , Calcium Signaling/physiology , Cerebellum/physiology , Gene Expression Regulation/physiology , Mice , Mice, Inbred C57BL , Neural Pathways/metabolism , Neural Pathways/physiology , Neuroglia/physiology , Organ Culture Techniques , Receptors, Purinergic P2X7/physiology , Signal Transduction/genetics
11.
J Neurophysiol ; 105(3): 1023-32, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21177991

ABSTRACT

In the cerebellum, retrograde release of glutamate (Glu) by Purkinje cells (PCs) participates in the control of presynaptic neurotransmitter release responsible for the late component of depolarization-induced suppression of excitation (DSE), as well as for depolarization-induced potentiation of inhibition (DPI). It might also participate in the depolarization-induced slow current (DISC) in PCs, although this contribution was later challenged. We also know that both DPI and DISC are soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent processes, although the molecular nature of the vesicular transporter was not determined. In PCs, VGLUT3 is the only known vesicular glutamate transporter identified and is expressed during the same developmental frame as when DPI, DISC, and the Glu-dependent component of DSE are observed. We therefore tested the hypothesis that all these processes depend on the presence of VGLUT3 by comparing the Glu-dependent component of DSE, DPI, and DISC in nearly mature (2- to 3-wk-old) wild-type and VGLUT3 knockout mice. Our data demonstrate that, in nearly mature mice, the slow component of DSE occurs through vesicular release of Glu that involves VGLUT3. This Glu-dependent component of DSE is no longer present in fully mature mice. This study also establishes that, in nearly mature mice, DPI also depends on the presence of VGLUT3, whereas this is not the case for DISC. Finally, the unusually large basal paired-pulse facilitation observed in nearly mature VGLUT3(-/-) mice but not in adult ones suggests that some basal retrograde release of Glu occurs during development and contributes to basal concentrations of extracellular Glu.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Glutamic Acid/metabolism , Purkinje Cells/metabolism , Synaptic Transmission/physiology , Animals , Cells, Cultured , Mice , Mice, Knockout , Neurotransmitter Agents/metabolism
12.
J Neurochem ; 109(3): 846-57, 2009 May.
Article in English | MEDLINE | ID: mdl-19250337

ABSTRACT

Neural progenitor cells (NPCs) are capable of self-renewal and differentiation into neurons, astrocytes and oligodendrocytes, and have been used to treat several animal models of CNS disorders. In the present study, we show that the P2X7 purinergic receptor (P2X7R) is present on NPCs. In NPCs, P2X7R activation by the agonists extracellular ATP or benzoyl ATP triggers opening of a non-selective cationic channel. Prolonged activation of P2X7R with these nucleotides leads to caspase independent death of NPCs. P2X7R ligation induces NPC lysis/necrosis demonstrated by cell membrane disruption accompanied with loss of mitochondrial membrane potential. In most cells that express P2X7R, sustained stimulation with ATP leads to the formation of a non-selective pore allowing the entry of solutes up to 900 Da, which are reportedly involved in P2X7R-mediated cell lysis. Surprisingly, activation of P2X7R in NPCs causes cell death in the absence of pore formation. Our data support the notion that high levels of extracellular ATP in inflammatory CNS lesions may delay the successful graft of NPCs used to replace cells and repair CNS damage.


Subject(s)
Adenosine Triphosphate/pharmacology , Cell Differentiation/drug effects , Embryonic Stem Cells/drug effects , Neurons/drug effects , Receptors, Purinergic P2/metabolism , Adenosine Triphosphate/analogs & derivatives , Animals , Calcium/metabolism , Caspases/metabolism , Cell Death/drug effects , Cell Differentiation/physiology , Cells, Cultured , Chelating Agents/pharmacology , Corpus Striatum/cytology , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Extracellular Fluid/drug effects , L-Lactate Dehydrogenase/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Necrosis/metabolism , Necrosis/pathology , Receptors, Purinergic P2/deficiency , Receptors, Purinergic P2X7 , Staurosporine/pharmacology , Tetrazolium Salts , Thiazoles , Time Factors
13.
Hum Mol Genet ; 18(8): 1449-63, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19181682

ABSTRACT

Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of human chromosome 21 (Hsa21). Recently, O'Doherty et al. [An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309 (2005) 2033-2037] generated a trans-species aneuploid mouse line (Tc1) that carries an almost complete Hsa21. The Tc1 mouse is the most complete animal model for DS currently available. Tc1 mice show many features that relate to human DS, including alterations in memory, synaptic plasticity, cerebellar neuronal number, heart development and mandible size. Because motor deficits are one of the most frequently occurring features of DS, we have undertaken a detailed analysis of motor behaviour in cerebellum-dependent learning tasks that require high motor coordination and balance. In addition, basic electrophysiological properties of cerebellar circuitry and synaptic plasticity have been investigated. Our results reveal that, compared with controls, Tc1 mice exhibit a higher spontaneous locomotor activity, a reduced ability to habituate to their environments, a different gait and major deficits on several measures of motor coordination and balance in the rota rod and static rod tests. Moreover, cerebellar long-term depression is essentially normal in Tc1 mice, with only a slight difference in time course. Our observations provide further evidence that support the validity of the Tc1 mouse as a model for DS, which will help us to provide insights into the causal factors responsible for motor deficits observed in persons with DS.


Subject(s)
Down Syndrome/physiopathology , Psychomotor Performance , Animals , Cerebellum/physiology , Down Syndrome/genetics , Female , Gait , Long-Term Synaptic Depression , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Muscle Strength , Neuronal Plasticity
14.
J Physiol ; 587(1): 101-13, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19001039

ABSTRACT

Extensive work has shown that activation of the cAMP-dependent protein kinase A (PKA) is crucial for long-term depression (LTD) of synaptic transmission in the hippocampus, a phenomenon that is thought to be involved in memory formation. Here we studied the role of an alternative target of cAMP, the exchange protein factor directly activated by cyclic AMP (Epac). We show that pharmacological activation of Epac by the selective agonist 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT) induces LTD in the CA1 region. Paired-pulse facilitation of synaptic responses remained unchanged after induction of this LTD, suggesting that it depended on postsynaptic mechanisms. The 8-pCPT-induced LTD was blocked by the Epac signalling inhibitor brefeldin-A (BFA), Rap-1 antagonist geranylgeranyltransferase inhibitor (GGTI) and p38 mitogen activated protein kinase (P38-MAPK) inhibitor SB203580. This indicated a direct involvement of Epac in this form of LTD. As for other forms of LTD, a mimetic peptide of the PSD-95/Disc-large/ZO-1 homology (PDZ) ligand motif of the AMPA receptor subunit GluR2 blocked the Epac-LTD, suggesting involvement of PDZ protein interaction. The Epac-LTD also depended on mobilization of intracellular Ca(2+), proteasome activity and mRNA translation, but not transcription, as it was inhibited by thapsigargin, lactacystin and anisomycin, but not actinomycin-D, respectively. Finally, we found that the pituitary adenylate cyclase activating polypeptide (PACAP) can induce an LTD that was mutually occluded by the Epac-LTD and blocked by BFA or SB203580, suggesting that the Epac-LTD could be mobilized by stimulation of PACAP receptors. Altogether these results provided evidence for a new form of hippocampal LTD.


Subject(s)
Guanine Nucleotide Exchange Factors/physiology , Hippocampus/physiology , Long-Term Synaptic Depression , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Animals , Brefeldin A/pharmacology , Calcium/metabolism , Cyclic AMP/analogs & derivatives , Cyclic AMP/pharmacology , Glycogen Synthase Kinase 3/physiology , Glycogen Synthase Kinase 3 beta , Guanine Nucleotide Exchange Factors/agonists , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Hippocampus/drug effects , In Vitro Techniques , Long-Term Synaptic Depression/drug effects , Mice , Nerve Tissue Proteins/biosynthesis , Proteasome Endopeptidase Complex/metabolism , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Receptors, AMPA/physiology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , p38 Mitogen-Activated Protein Kinases/physiology
15.
J Neurochem ; 105(6): 2069-79, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18266929

ABSTRACT

In the rodent cerebellum, pharmacological activation of group III pre-synaptic metabotropic glutamate receptors (mGluRs) by the broad spectrum agonist L-2-amino-4-phosphonobutyric acid, acutely depresses excitatory synaptic transmission at parallel fiber (PF)-Purkinje cell (PC) synapses. Among the group III mGluR subtypes, cerebellar granule cells express predominantly mGluR4, but also mGluR7 and mGluR8 mRNA. Taking into account that previous functional and pharmacological studies have used group III mGluR broad spectrum agonists that do not differentiate between these various subtypes, their relative contribution to the modulation of glutamatergic transmission at PF-PC synapses remains to be elucidated. In order to clarify this issue, we applied conventional whole-cell patch-clamp recordings and pre-synaptic calcium influx measurements, combined with pharmacological manipulations to rat and mice cerebellar slices. With the use of (1S,2R)-1-amino-2-phosphonomethylcyclopropanecarboxylic acid, a new and selective group III mGluR agonist, N-phenyl-7-(hydroxylimino)cyclopropa[b]-chromen-1a-carboxamide, the specific positive allosteric modulator of mGluR4, (S)-3,4-dicarboxyphenylglycine, a selective mGluR8 agonist, and mGluR4 knock-out mice, we demonstrate that the inhibitory control of group III mGluRs on excitatory neurotransmission at PF-PC synapses of the rodent cerebellar cortex, is totally because of the activation of pre-synaptic mGluR4 autoreceptors.


Subject(s)
Cerebellar Cortex/physiology , Excitatory Postsynaptic Potentials/physiology , Neural Inhibition/physiology , Receptors, Metabotropic Glutamate/physiology , Animals , Cerebellar Cortex/drug effects , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Inhibition/drug effects , Purkinje Cells/drug effects , Purkinje Cells/physiology , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
16.
J Neurophysiol ; 98(5): 2550-65, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17855589

ABSTRACT

In cerebellar Purkinje cells (PCs), activation of postsynaptic mGluR1 receptors inhibits parallel fiber (PF) to PC synaptic transmission by retrograde signaling. However, results were conflicting with respect to whether endocannabinoids or glutamate (Glu) is the retrograde messenger involved. Experiments in cerebellar slices from 10- to 12-day-old rats and mice confirmed that suppression of PF-excitatory postsynaptic currents (EPSCs) by mGluR1 agonists was entirely blocked by cannabinoid receptor antagonists at this early developmental stage. In contrast, suppression of PF-EPSCs by mGluR1 agonists was only partly blocked by cannabinoid receptor antagonists in 18- to 22-day-old rats, and the remaining suppression was accompanied by an increase in paired-pulse facilitation. This endocannnabinoidindependent suppression of PF-EPSCs was potentiated by the Glu uptake inhibitor D-threo-beta-benzyloxyaspartate (D-TBOA) and blocked by the desensitizing kainate (KA) receptors agonist SYM 2081, by nonsaturating concentrations of 6-cyano-7-nitroquinoxaline-2-3-dione (CNQX) [but not by GYKI 52466 hydrochloride (GYKI)] and by dialyzing PCs with guanosine 5'-[beta-thio]diphosphate (GDP-betaS). An endocannnabinoid-independent suppression of PF-EPSCs was also present in nearly mature wild-type mice but was absent in GluR6(-/-) mice. The endocannnabinoid-independent suppression of PF-EPSCs induced by mGluR1 agonists and the KA-dependent component of depolarization-induced suppression of excitation (DSE) were blocked by ryanodine acting at a presynaptic level. We conclude that retrograde release of Glu by PCs participates in mGluR1 agonist-induced suppression of PF-EPSCs at nearly mature PF-PC synapses and that Glu operates through activation of presynaptic KA receptors located on PFs and prolonged release of calcium from presynaptic internal calcium stores.


Subject(s)
Calcium/metabolism , Excitatory Amino Acid Agents/pharmacology , Feedback/drug effects , Purkinje Cells/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Animals, Newborn , Calcium/pharmacology , Cannabinoid Receptor Modulators/agonists , Cannabinoid Receptor Modulators/antagonists & inhibitors , Cannabinoid Receptor Modulators/metabolism , Cerebellum/cytology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Feedback/physiology , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Inhibition/drug effects , Neural Inhibition/physiology , Patch-Clamp Techniques , Purkinje Cells/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Kainic Acid/agonists , Receptors, Kainic Acid/antagonists & inhibitors , Receptors, Kainic Acid/deficiency , Synapses/drug effects , Synaptic Transmission/drug effects , GluK2 Kainate Receptor
17.
Cereb Cortex ; 13(11): 1251-6, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14576216

ABSTRACT

In rat prefrontal cortex (the prelimbic area of medial frontal cortex), the induction of long-term depression (LTD) and long-term potentiation (LTP) of glutamatergic synapses is powerfully modulated by dopamine. The presence of dopamine in the bathing medium facilitates LTD in slice preparations, whereas in the anesthetized intact brain, dopamine released from dopaminergic axon terminals in the prefrontal cortex facilitates LTP. Dopaminergic facilitation of LTD is at least partly achieved by postsynaptic biochemical mechanisms in which enzymatic processes triggered by dopamine receptor activation cooperate with those triggered by glutamate metabotropic receptor activation. Evidence suggests that dopamine facilitates LTP also in the slice condition. In this case, dopamine receptors must be pre-stimulated ('primed') before the application of high-frequency stimuli in the presence of dopamine. This procedure may mimic baseline stimulation of dopamine receptors that occurs under physiological conditions.


Subject(s)
Dopamine/physiology , Long-Term Synaptic Depression/physiology , Neuronal Plasticity/physiology , Prefrontal Cortex/physiology , Animals , Dopamine/pharmacology , Humans , Long-Term Synaptic Depression/drug effects , Neuronal Plasticity/drug effects , Neurons/drug effects , Neurons/physiology , Prefrontal Cortex/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...