Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
2.
Sensors (Basel) ; 21(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34640968

ABSTRACT

This paper presents a design for temperature and pressure wireless sensors made of polymer-derived ceramics for extreme environment applications. The wireless sensors were designed and fabricated with conductive carbon paste on an 18.24 mm diameter with 2.4 mm thickness polymer-derived ceramic silicon carbon nitride (PDC-SiCN) disk substrate for the temperature sensor and an 18 × 18 × 2.6 mm silicon carbide ceramic substrate for the pressure sensor. In the experiment, a horn antenna interrogated the patch antenna sensor on a standard muffle furnace and a Shimadzu AGS-J universal test machine (UTM) at a wireless sensing distance of 0.5 m. The monotonic relationship between the dielectric constant of the ceramic substrate and ambient temperature is the fundamental principle for wireless temperature sensing. The temperature measurement has been demonstrated from 600 °C to 900 °C. The result closely matches the thermocouple measurement with a mean absolute difference of 2.63 °C. For the pressure sensor, the patch antenna was designed to resonate at 4.7 GHz at the no-loading case. The sensing mechanism is based on the piezo-dielectric property of the silicon carbon nitride. The developed temperature/pressure sensing system provides a feasible solution for wireless measurement for extreme environment applications.

3.
Langmuir ; 32(14): 3420-32, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-26991373

ABSTRACT

The effect of hydrodynamic slip on salinity-gradient-driven power conversion by the process of reverse electrodialysis, in which the free energy of mixing of salt and fresh water across a nanoporous membrane is harnessed to drive an electric current in an external circuit, is investigated theoretically using a continuum fluid dynamics model. A general one-dimensional model is derived that decouples transport inside the membrane pores from the effects of electrical resistance at the pore ends, from which an analytical expression for the power conversion rate is obtained for a perfectly ion-selective membrane as a function of the slip length, surface charge density, membrane thickness, pore radius, and other membrane and electrolyte properties. The theoretical model agrees quantitatively with finite-element numerical calculations and predicts significant enhancements--up to several times--of salinity-gradient power conversion due to hydrodynamic slip for realistic systems.

4.
London; London School of Hygiene and Tropical Medicine; 2001. [7],34 p.
Monography in English | MedCarib | ID: med-16330
SELECTION OF CITATIONS
SEARCH DETAIL
...