Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 19796, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34611283

ABSTRACT

We previously reported that growth promoter-induced skeletal muscle hypertrophy co-ordinately upregulated expression of genes associated with an integrated stress response (ISR), as well as potential ISR regulators. We therefore used Adeno-Associated Virus (AAV)-mediated overexpression of these genes, individually or in combination, in mouse skeletal muscle to test whether they induced muscle hypertrophy. AAV of each target gene was injected into mouse Tibialis anterior (TA) and effects on skeletal muscle growth determined 28 days later. Individually, AAV constructs for Arginase-2 (Arg2) and Activating transcription factor-5 (Atf5) reduced hindlimb muscle weights and upregulated expression of genes associated with an ISR. AAV-Atf5 also decreased Myosin heavy chain (MyHC)-IIB mRNA, but increased MyHC-IIA and isocitrate dehydrogenase-2 (Idh2) mRNA, suggesting ATF5 is a novel transcriptional regulator of Idh2. AAV-Atf5 reduced the size of both TA oxidative and glycolytic fibres, without affecting fibre-type proportions, whereas Atf5 combined with Cebpg (CCAAT enhancer binding protein-gamma) only reduced the size of glycolytic fibres and tended to increase the proportion of oxidative fibres. It is likely that persistent Atf5 overexpression maintains activation of the ISR, thereby reducing protein synthesis and/or increasing protein degradation and possibly apoptosis, resulting in inhibition of muscle growth, with overexpression of Arg2 having a similar effect.


Subject(s)
Activating Transcription Factors/genetics , Dependovirus/genetics , Gene Expression , Genetic Vectors/genetics , Muscle, Skeletal/metabolism , Stress, Physiological , Transduction, Genetic , Activating Transcription Factors/metabolism , Animals , Energy Metabolism , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Mice , RNA, Messenger/genetics
2.
Sci Rep ; 10(1): 22177, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335245

ABSTRACT

Phosphoenolpyruvate carboxykinase (PEPCK) is a gluconeogenic enzyme with a cytosolic (Pck1/PEPCK-C) and mitochondrial (Pck2/PEPCK-M) isoform. Here we investigate the effect of 3-mercaptopicolinic acid (3-MPA), a PEPCK inhibitor, on C2C12 muscle cells. We report that Pck2 mRNA is 50-5000-fold higher than Pck1 during C2C12 myogenesis, indicating Pck2 is the predominant PEPCK isoform. C2C12 cell proliferation was inhibited in a dose-dependent manner following 48 h 3-MPA treatment (0.01-1 mM). C2C12 myogenic differentiation was significantly induced following 3-MPA treatment (0.25, 0.5, 1 mM) from day 0 of differentiation, demonstrated by increased creatine kinase activity, fusion index and myotube diameter; likewise, the myosin heavy chain (MyHC)-IIB isoform (encoded by Myh4) is an indicator of hypertrophy, and both porcine MYH4-promoter activity and endogenous Myh4 mRNA were also significantly induced. High doses (0.5 and/or 1 mM) of 3-MPA reduced mRNA expression of Pck2 and genes associated with serine biosynthesis (Phosphoglycerate dehydrogenase, Phgdh; phosphoserine aminotransferase-1, Psat1) following treatment from days 0 and 4. To conclude, as Pck2/PEPCK-M is the predominant isoform in C2C12 cells, we postulate that 3-MPA promoted myogenic differentiation through the inhibition of PEPCK-M. However, we were unable to confirm that 3-MPA inhibited PEPCK-M enzyme activity as 3-MPA interfered with the PEPCK enzyme assay, particularly at 0.5 and 1 mM.


Subject(s)
Cell Differentiation/drug effects , Enzyme Inhibitors/pharmacology , Muscle Development/drug effects , Phosphoenolpyruvate Carboxykinase (ATP)/antagonists & inhibitors , Phosphoenolpyruvate Carboxykinase (GTP)/antagonists & inhibitors , Picolinic Acids/pharmacology , Animals , Biomarkers , Cell Line , Cell Proliferation/drug effects , Cells, Cultured , Gene Expression Regulation/drug effects , Gluconeogenesis/genetics , Isoenzymes , Mice , Muscle Cells , Promoter Regions, Genetic , RNA, Messenger/genetics , Serine/biosynthesis
3.
Biochem Biophys Rep ; 20: 100694, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31681859

ABSTRACT

Skeletal muscle is a highly metabolic and dynamic tissue that is formed through the complex and well-organised process of myogenesis. Although there is a good understanding about the role of the Muscle Regulatory Factors during myogenesis, little is known about the potential interplay of other metabolic proteins. The aim of this study was to determine the endogenous mRNA expression profile for a novel group of genes, recently associated with ß2-adrenergic agonist (BA) induced muscle hypertrophy in pigs [1], during myogenic differentiation in C2C12 cells and their response to dibutyryl cyclic-AMP (dbcAMP). These genes included mitochondrial phosphoenolpyruvate carboxykinase (PCK2/PEPCK-M), genes involved in serine biosynthesis (Phosphoglycerate dehydrogenase, PHGDH; Phosphoserine aminotransferase-1, PSAT1; Phosphoserine phosphatase, PSPH) and those involved in an integrated stress response (Asparagine synthetase, ASNS; Sestrin-2, SESN2; and Activating transcription factor-5, ATF5). A coordinated peak in endogenous PCK2, PHGDH, PSAT1, PSPH, ASNS, ATF5 and SESN2 mRNA expression was observed at day 2 of differentiation (P < 0.001) in C2C12 cells, which coincided with the peak in myogenin mRNA. Myotube hypertrophy was induced with dbcAMP (1 mM) treatment from day 0, thereby mimicking the in vivo BA response. Although dbcAMP treatment from day 0 induced larger myotubes and increased both myosin heavy chain-IIB (MyHC-IIB) and pyruvate carboxylase (PC) mRNA, the expression of PCK2, PHGDH, PSAT1 and ASNS mRNA were all unaffected. Treatment with dbcAMP from day 4 increased MyHC-IIB mRNA, however this was less dramatic compared to the response observed following treatment from day 0, but there was no effect on PC mRNA. There was also no effect of dbcAMP treatment from day 4 on PCK2, PHGDH, PSAT1 and ASNS mRNA. To conclude, the coordinated day 2 peak in endogenous expression of PCK2, PHGDH, PSAT1, PSPH, ASNS, ATF5 and SESN2 mRNA may relate to a shift in biosynthetic demand required to initiate myogenic differentiation. However, dbcAMP had no effect on the expression of these genes in vitro suggesting that the effects observed in BA-treated pigs might be via other signalling pathways from the activation of the ß2-adrenergic receptor, but independent of cAMP, or that there are species differences in the response.

4.
PLoS One ; 14(8): e0221517, 2019.
Article in English | MEDLINE | ID: mdl-31465472

ABSTRACT

TLQP-21, a peptide encoded by the highly conserved vgf gene, is expressed in neuroendocrine cells and has been the most prominent VGF-derived peptide studied in relation to control of energy balance. The recent discovery that TLQP-21 is the natural agonist for the complement 3a receptor 1 (C3aR1) has revived interest in this peptide as a potential drug target for obesity. We have investigated its function in Siberian hamsters (Phodopus sungorus), a rodent that displays natural seasonal changes in body weight and adiposity as an adaptation to survive winter. We have previously shown that intracerebroventricular administration of TLQP-21 reduced food intake and body weight in hamsters in their long-day fat state. The aim of our current study was to determine the systemic actions of TLQP-21 on food intake, energy expenditure and body weight, and to establish whether adiposity affected these responses. Peripheral infusion of TLQP-21 (1mg/kg/day for 7 days) in lean hamsters exposed to short photoperiods (SP) reduced cumulative food intake in the home cage (p<0.05), and intake when measured in metabolic cages (P<0.01). Energy expenditure was significantly increased (p<0.001) by TLQP-21 infusion, this was associated with a significant increase in uncoupling protein 1 mRNA in brown adipose tissue (BAT) (p<0.05), and body weight was significantly reduced (p<0.05). These effects of systemic TLQP-21 treatment were not observed in hamsters exposed to long photoperiod (LP) with a fat phenotype. C3aR1 mRNA and protein were abundantly expressed in the hypothalamus, brown and white adipose tissue in hamsters, but changes in expression cannot explain the differential response to TLQP-21 in lean and fat hamsters.


Subject(s)
Adiposity/drug effects , Neuropeptides/pharmacology , Peptide Fragments/pharmacology , Photoperiod , Animals , Biomarkers , Brain/metabolism , Carbon Dioxide/metabolism , Cricetinae , Energy Metabolism , Female , Gene Expression , Oxygen/metabolism , Receptors, Complement/metabolism
5.
Nutr Metab (Lond) ; 16: 1, 2019.
Article in English | MEDLINE | ID: mdl-30622622

ABSTRACT

BACKGROUND: Increased consumption of linoleic acid (LA, omega-6) in Western diets coupled with the pro-inflammatory and adipogenic properties of its derivatives has led to suggestions that fetal exposure to this dietary pattern could be contributing to the intergenerational cycle of obesity. METHOD: This study aimed to evaluate the effects of maternal consumption of a LA to alpha-linolenic acid (ALA) ratio similar to modern Western diets (9:1) compared to a lower ratio (1:1.5) on placental and fetal growth, and to determine any cumulative effects by feeding both diets at two total fat levels (18% vs 36% fat w/w). Female Wistar rats (n = 5-7/group) were assigned to one of the four experimental diets prior to mating until 20d of gestation. RESULTS: Fatty acid profiles of maternal and fetal blood and placental tissue at 20d gestation were different between dietary groups, and largely reflected dietary fatty acid composition. Female fetuses were heavier (2.98 ± 0.06 g vs 3.36 ± 0.07 g, P < 0.01) and male placental weight was increased (0.51 ± 0.02 g vs 0.58 ± 0.02 g, P < 0.05) in the low LA:ALA groups. Female fetuses of dams exposed to a 36% fat diet had a reduced relative liver weight irrespective of LA:ALA ratio (7.61 ± 0.22% vs 6.93 ± 0.19%, P < 0.05). These effects occurred in the absence of any effect of the dietary treatments on maternal bodyweight, fat deposition or expression of key lipogenic genes in maternal and fetal liver or maternal adipose tissue. CONCLUSION: These findings suggest that both the total fat content as well as the LA:ALA ratio of the maternal diet have sex-specific implications for the growth of the developing fetus.

6.
PLoS One ; 13(7): e0201481, 2018.
Article in English | MEDLINE | ID: mdl-30052661

ABSTRACT

Previously, we highlighted induction of an integrated stress response (ISR) gene program in skeletal muscle of pigs treated with a beta-adrenergic agonist. Hence we tested the hypothesis that the ER-stress inhibitor, sodium 4-phenylbutyrate (PBA), would inhibit Clenbuterol-mediated muscle growth and reduce expression of genes that are known indicators of an ISR in mice. Clenbuterol (1mg/kg/day) administered to C57BL6/J mice for 21 days increased body weight (p<0.001), muscle weights (p<0.01), and muscle fibre diameters (p<0.05). Co-administration of PBA (100mg/kg/day) did not alter the Clenbuterol-mediated phenotype, nor did PBA alone have any effects compared to that of the vehicle treated mice. Clenbuterol increased skeletal muscle mRNA expression of phosphoserine amino transferase 1 (PSAT1, p<0.001) and cyclophillin A (p<0.01) at day 3, but not day 7. Clenbuterol decreased mRNA expression of activating transcription factor (ATF) 4 and ATF5 at day 3 (p<0.05) and day 7 (p<0.01), X-box binding protein 1 (XBP1) variant 2 mRNA at day 3 only (p<0.01) and DNA damage inducible transcript 3 (DDIT3/CHOP) mRNA at day 7 only (p<0.05). Co-administration of PBA had no effect on Clenbuterol-induced changes in skeletal muscle gene expression. In contrast, treatment of C2C12 myotubes with 5mM PBA (8hr) attenuated the thapsigargin-induced ISR gene program. Prolonged (24-48hr) treatment with PBA caused atrophy (p<0.01), reduced neoprotein synthesis (p<0.0001) and decreased expression of myogenin and fast myosin heavy chain genes (p<0.01), indicating an inhibition of myogenic differentiation. In summary, Clenbuterol did not induce an ISR gene program in mouse muscle. On the contrary, it reduced expression of a number of ISR genes, but it increased expression of PSAT1 mRNA. Co-administration of PBA had no effect on Clenbuterol-mediated muscle growth or gene expression in mice, whereas PBA did inhibit thapsigargin-induced ISR gene expression in cultured C2C12 cells and appeared to inhibit myogenic differentiation, independent of altering ISR gene expression.


Subject(s)
Clenbuterol/pharmacology , Muscle, Skeletal/growth & development , Phenylbutyrates/pharmacology , Animals , Body Weight/drug effects , Gene Expression Regulation/drug effects , Male , Mice , Muscle Proteins/biosynthesis , RNA, Messenger/biosynthesis , Swine
7.
Genes Nutr ; 9(1): 365, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24357221

ABSTRACT

Nutrition in early life is a determinant of lifelong physiological and metabolic function. Diseases that are associated with ageing may, therefore, have their antecedents in maternal nutrition during pregnancy and lactation. Rat mothers were fed either a standard laboratory chow diet (C) or a cafeteria diet (O) based upon a varied panel of highly palatable human foods, during lactation. Their offspring were then weaned onto chow or cafeteria diet giving four groups of animals (CC, CO, OC, OO n = 9-10). Livers were harvested 10 weeks post-weaning for assessment of gene and protein expression, and DNA methylation. Cafeteria feeding post-weaning impaired glucose tolerance and was associated with sex-specific altered mRNA expression of peroxisome proliferator activated receptor gamma and components of the insulin signalling pathway (Irs2, Akt1 and IrB). Exposure to the cafeteria diet during the suckling period modified the later response to the dietary challenge. Post-weaning cafeteria feeding only down-regulated IrB when associated with cafeteria feeding during suckling (group OO, interaction of diet in weaning and lactation P = 0.041). Responses to cafeteria diet during both phases of the experiment varied between males and females. Global DNA methylation was altered in the liver following cafeteria feeding in the post-weaning period, in males but not females. Methylation of the IrB promoter was increased in group OC, but not OO (P = 0.036). The findings of this study add to a growing evidence base that suggests tissue function across the lifespan a product of cumulative modifications to the epigenome and transcriptome, which may be both tissue and sex-specific.

8.
J Endocrinol ; 217(1): 45-58, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23328072

ABSTRACT

Fat infiltration within muscle is one of a number of features of vitamin D deficiency, which leads to a decline in muscle functionality. The origin of this fat is unclear, but one possibility is that it forms from myogenic precursor cells present in the muscle, which transdifferentiate into mature adipocytes. The current study examined the effect of the active form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), on the capacity of the C2C12 muscle cell line to differentiate towards the myogenic and adipogenic lineages. Cells were cultured in myogenic or adipogenic differentiation media containing increasing concentrations (0, 10⁻¹³, 10⁻¹¹, 10⁻9, 10⁻7 or 10⁻5  M) of 1,25(OH)2D3 for up to 6 days and markers of muscle and fat development measured. Mature myofibres were formed in both adipogenic and myogenic media, but fat droplets were only observed in adipogenic media. Relative to controls, low physiological concentrations (10⁻¹³ and 10⁻¹¹  M) of 1,25(OH)2D3 increased fat droplet accumulation, whereas high physiological (10⁻9  M) and supraphysiological concentrations (≥10⁻7  M) inhibited fat accumulation. This increased accumulation of fat with low physiological concentrations (10⁻¹³ and 10⁻¹¹  M) was associated with a sequential up-regulation of PPARγ2 (PPARG) and FABP4 mRNA, indicating formation of adipocytes, whereas higher concentrations (≥10⁻9  M) reduced all these effects, and the highest concentration (10⁻5  M) appeared to have toxic effects. This is the first study to demonstrate dose-dependent effects of 1,25(OH)2D3 on the transdifferentiation of muscle cells into adipose cells. Low physiological concentrations (possibly mimicking a deficient state) induced adipogenesis, whereas higher (physiological and supraphysiological) concentrations attenuated this effect.


Subject(s)
Adipocytes, White/cytology , Adipogenesis , Calcitriol/metabolism , Cell Transdifferentiation , Muscle, Skeletal/cytology , Adipocytes, Brown/cytology , Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Animals , Biomarkers/metabolism , Calcitriol/adverse effects , Cell Line , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Gene Expression Regulation , Lipogenesis , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Osmolar Concentration , PPAR gamma/genetics , PPAR gamma/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
9.
Exp Physiol ; 96(2): 203-15, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20851857

ABSTRACT

Maternal undernutrition during sensitive periods of pregnancy results in offspring predisposed towards the development of a number of diseases of adulthood, including hypertension and diabetes. In order to determine the nature of any gross alterations in fetal growth during early organogenesis, we supplied timed-mated pregnant mice with diets containing 6% protein (6%P), 9% protein (9%P) or 18% protein (18%P; control) from day 0 of pregnancy. At embryonic days 11 (E11), 12 (E12) and 13 (E13), females were killed and fetuses removed. Gross morphological analysis revealed that fetal limb growth was impaired between E11 and E12 in 6%P animals, but this recovered by E13. Likewise, fetal liver growth and lung branching morphogenesis were seen to exhibit an initial growth impairment at E12 followed by a rapid recovery by E13. Coincident with the observed changes in fetal growth, we noted an elevation in maternal hepatic triglyceride content, expression of the ketogenic 3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2) and circulating plasma ß-hydroxybutyrate (BOHB). In addition, fetal liver Hmgcs2 expression was switched on by E13 in both 6%P- and 9%P-exposed animals. Exogenous BOHB did not influence branching morphogenesis in fetal lung explant cultures; however, we cannot rule out the possibility that this may occur in vivo. In conclusion, we find that disturbance of fetal growth by maternal dietary protein restriction is associated and therefore potentially indicated by changes in maternal and fetal ketone body metabolism.


Subject(s)
3-Hydroxybutyric Acid/toxicity , Fetal Growth Retardation/physiopathology , Hydroxymethylglutaryl-CoA Synthase/physiology , Lung/embryology , Lung/growth & development , Pregnancy Complications/physiopathology , Prenatal Exposure Delayed Effects/physiopathology , Protein Deficiency/physiopathology , Animals , Dietary Proteins/metabolism , Female , Fetal Growth Retardation/etiology , Lung/drug effects , Male , Mice , Mice, Inbred ICR , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...