Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-450920

ABSTRACT

Viruses can subvert a number of cellular processes in order to block innate antiviral responses, and many viruses interact with cellular splicing machinery. SARS-CoV-2 infection was shown to suppress global mRNA splicing, and at least 10 SARS-CoV-2 proteins bind specifically to one or more human RNAs. Here, we investigate 17 published experimental and clinical datasets related to SARS-CoV-2 infection as well as datasets from the betacoronaviruses SARS-CoV and MERS as well as Streptococcus pneumonia, HCV, Zika virus, Dengue virus, influenza H3N2, and RSV. We show that genes showing differential alternative splicing in SARS-CoV-2 have a similar functional profile to those of SARS-CoV and MERS and affect a diverse set of genes and biological functions, including many closely related to virus biology. Additionally, the differentially spliced transcripts of cells infected by coronaviruses were more likely to undergo intron-retention, contain a pseudouridine modification and a smaller number of exons than differentially spliced transcripts in the control groups. Viral load in clinical COVID-19 samples was correlated with isoform distribution of differentially spliced genes. A significantly higher number of ribosomal genes are affected by DAS and DGE in betacoronavirus samples, and the betacoronavirus differentially spliced genes are depleted for binding sites of RNA-binding proteins. Our results demonstrate characteristic patterns of differential splicing in cells infected by SARS-CoV-2, SARS-CoV, and MERS, potentially modifying a broad range of cellular functions and affecting a diverse set of genes and biological functions.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-202275

ABSTRACT

Dysregulated IL-1{beta} and IL-6 responses have been implicated in the pathogenesis of severe Coronavirus Disease 2019 (COVID-19). Innovative approaches for evaluating the biological activity of these cytokines in vivo are urgently needed to complement clinical trials of therapeutic targeting of IL-1{beta} and IL-6 in COVID-19. We show that the expression of IL-1{beta} or IL-6 inducible transcriptional signatures (modules) reflects the bioactivity of these cytokines in immunopathology modelled by juvenile idiopathic arthritis (JIA) and rheumatoid arthritis. In COVID-19, elevated expression of IL-1{beta} and IL-6 response modules, but not the cytokine transcripts themselves, is a feature of infection in the nasopharynx and blood, but is not associated with severity of COVID-19 disease, length of stay or mortality. We propose that IL-1{beta} and IL-6 transcriptional response modules provide a dynamic readout of functional cytokine activity in vivo, aiding quantification of the biological effects of immunomodulatory therapies in COVID-19.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20092452

ABSTRACT

SO_SCPLOWUMMARYC_SCPLOWUnderstanding the pathophysiology of SARS-CoV-2 infection is critical for therapeutics and public health intervention strategies. Viral-host interactions can guide discovery of regulators of disease outcomes, and protein structure function analysis points to several immune pathways, including complement and coagulation, as targets of the coronavirus proteome. To determine if conditions associated with dysregulation of the complement or coagulation systems impact adverse clinical outcomes, we performed a retrospective observational study of 11,116 patients who presented with suspected SARS-CoV-2 infection. We found that history of macular degeneration (a proxy for complement activation disorders) and history of coagulation disorders (thrombocytopenia, thrombosis, and hemorrhage) are risk factors for morbidity and mortality in SARS-CoV-2 infected patients - effects that could not be explained by age, sex, or history of smoking. Further, transcriptional profiling of nasopharyngeal (NP) swabs from 650 control and SARS-CoV-2 infected patients demonstrated that in addition to innate Type-I interferon and IL-6 dependent inflammatory immune responses, infection results in robust engagement and activation of the complement and coagulation pathways. Finally, we conducted a candidate driven genetic association study of severe SARS-CoV-2 disease. Among the findings, our scan identified putative complement and coagulation associated loci including missense, eQTL and sQTL variants of critical regulators of the complement and coagulation cascades. In addition to providing evidence that complement function modulates SARS-CoV-2 infection outcome, the data point to putative transcriptional genetic markers of susceptibility. The results highlight the value of using a multi-modal analytical approach, combining molecular information from virus protein structure-function analysis with clinical informatics, transcriptomics, and genomics to reveal determinants and predictors of immunity, susceptibility, and clinical outcome associated with infection.

4.
Article in English | WPRIM (Western Pacific) | ID: wpr-103867

ABSTRACT

The latissimus dorsi flap is popular due to the versatile nature of its applications. When used as a pedicled flap it provides a robust solution when soft tissue coverage is required following breast, thoracic and head and neck surgery. Its utilization as a free flap is extensive due to the muscle's size, constant anatomy, large caliber of the pedicle and the fact it can be used for functional muscle transfers. In facial palsy it provides the surgeon with a long neurovascular pedicle that is invaluable in situations where commonly used facial vessels are not available, in congenital cases or where previous free functional muscle transfers have been attempted, or patients where a one-stage procedure is indicated and a long nerve is required to reach the contra-lateral side. Although some facial palsy surgeons use the trans-axillary approach, an operative guide of raising the flap by this method has not been provided. A clear guide of raising the flap with the patient in the supine position is described in detail and offers the benefits of reducing the risk of potential brachial plexus injury and allows two surgical teams to work synchronously to reduce operative time.


Subject(s)
Humans , Brachial Plexus , Breast , Facial Paralysis , Free Tissue Flaps , Head , Neck , Operative Time , Superficial Back Muscles , Supine Position , Surgical Flaps
SELECTION OF CITATIONS
SEARCH DETAIL
...