Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Type of study
Publication year range
1.
J Transl Med ; 22(1): 337, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589873

ABSTRACT

BACKGROUND: The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS: We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS: In silico analyses combined with cell-based assays identified the Wnt-ß-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, ß-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS: An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Mice , Animals , Prion Proteins/genetics , Prion Proteins/metabolism , beta Catenin/metabolism , Glucocorticoids , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Phenotype , Prognosis , Wnt Signaling Pathway , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
2.
Biol Reprod ; 110(1): 78-89, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37776549

ABSTRACT

The kinesin light chain 3 protein (KLC3) is the only member of the kinesin light chain protein family that was identified in post-meiotic mouse male germ cells. It plays a role in the formation of the sperm midpiece through its association with both spermatid mitochondria and outer dense fibers (ODF). Previous studies showed a significant correlation between its expression level and sperm motility and quantitative semen parameters in humans, while the overexpression of a KLC3-mutant protein unable to bind ODF also affected the same traits in mice. To further assess the role of KLC3 in fertility, we used CRISPR/Cas9 genome editing in mice and investigated the phenotypes induced by the invalidation of the gene or of a functional domain of the protein. Both approaches gave similar results, i.e. no detectable change in male or female fertility. Testis histology, litter size and sperm count were not altered. Apart from the line-dependent alterations of Klc3 mRNA levels, testicular transcriptome analysis did not reveal any other changes in the genes tested. Western analysis supported the absence of KLC3 in the gonads of males homozygous for the inactivating mutation and a strong decrease in expression in males homozygous for the allele lacking one out of the five tetratricopeptide repeats. Overall, these observations raise questions about the supposedly critical role of this kinesin in reproduction, at least in mice where its gene mutation or inactivation did not translate into fertility impairment.


Subject(s)
Kinesins , Sperm Motility , Animals , Female , Humans , Male , Mice , Fertility/genetics , Kinesins/genetics , Kinesins/metabolism , Mice, Knockout , Mutation , Proteins/metabolism , Semen , Sperm Motility/genetics , Spermatogenesis/physiology , Spermatozoa/metabolism , Testis/metabolism
3.
Biol Reprod ; 109(4): 408-414, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37561421

ABSTRACT

Gene knockout experiments have shown that many genes are dispensable for a given biological function. In this review, we make an assessment of male and female germ cell-specific genes dispensable for the function of reproduction in mice, the inactivation of which does not affect fertility. In particular, we describe the deletion of a 1 Mb block containing nineteen paralogous genes of the oogenesin/Pramel family specifically expressed in female and/or male germ cells, which has no consequences in both sexes. We discuss this notion of dispensability and the experiments that need to be carried out to definitively conclude that a gene is dispensable for a function.


Subject(s)
Infertility, Male , Testis , Animals , Female , Male , Mice , Fertility/genetics , Germ Cells , Infertility, Male/genetics , Mice, Knockout , Reproduction , Spermatogenesis/genetics
4.
Genet Sel Evol ; 54(1): 71, 2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36309651

ABSTRACT

BACKGROUND: The palate is a structure separating the oral and nasal cavities and its integrity is essential for feeding and breathing. The total or partial opening of the palate is called a cleft palate and is a common malformation in mammals with environmental or hereditary aetiologies. Generally, it compromises life expectancy in the absence of surgical repair. A new form of non-syndromic cleft palate arose recently in Limousine cattle, with animals referred to the French National Observatory of Bovine Abnormalities since 2012. Since the number of affected animals has increased steadily, this study was undertaken to identify the cause of this disease. RESULTS: Based on pedigree analysis, occurrence of cleft palate in Limousine cattle was concordant with an autosomal recessive mode of inheritance. Genotyping of 16 affected animals and homozygosity mapping led to the identification of a single disease-associated haplotype on Bos taurus chromosome (BTA)19. The genome of two affected animals was sequenced, and their sequences were compared to the ARS-UCD1.2 reference genome to identify variants. The likely causal variants were compared to the variant database of the 1000 bull genome project and two fully linked mutations in exon 24 of the MYH3 (myosin heavy chain) gene were detected: a 1-bp non-synonymous substitution (BTA19:g.29609623A>G) and a 11-bp frameshift deletion (BTA19:g.29609605-29609615del). These two mutations were specific to the Limousine breed, with an estimated allele frequency of 2.4% and are predicted to be deleterious. The frameshift leads to a premature termination codon. Accordingly, mRNA and protein analyses in muscles from wild-type and affected animals revealed a decrease in MYH3 expression in affected animals, probably due to mRNA decay, as well as an absence of the MYH3 protein in these animals. MYH3 is mostly expressed in muscles, including craniofacial muscles, during embryogenesis, and its absence may impair palate formation. CONCLUSIONS: We describe a new form of hereditary cleft palate in Limousine cattle. We identified two fully linked and deleterious mutations, ultimately leading to the loss-of-function of the MYH3 protein. The mutations were included on the Illumina EuroG10k v8 and EuroGMD v1 SNP chips and are used to set up a reliable eradication strategy in the French Limousine breed.


Subject(s)
Cleft Palate , Cattle/genetics , Animals , Male , Cleft Palate/genetics , Cleft Palate/veterinary , Pedigree , Mutation , Frameshift Mutation , Haplotypes , Mammals/genetics
5.
Vet Res ; 53(1): 54, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35799279

ABSTRACT

The Shadoo and PrP prion protein family members are thought to be functionally related, but previous knockdown/knockout experiments in early mouse embryogenesis have provided seemingly contradictory results. In particular, Shadoo was found to be indispensable in the absence of PrP in knockdown analyses, but a double-knockout of the two had little phenotypic impact. We investigated this apparent discrepancy by comparing transcriptomes of WT, Prnp0/0 and Prnp0/0Sprn0/0 E6.5 mouse embryos following inoculation by Sprn- or Prnp-ShRNA lentiviral vectors. Our results suggest the possibility of genetic adaptation in Prnp0/0Sprn0/0 mice, thus providing a potential explanation for their previously observed resilience.


Subject(s)
Prion Proteins , Prions , Animals , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Prion Proteins/genetics , Prions/genetics , RNA, Small Interfering , Recombinant Proteins , Transcription Factors
6.
Endocrinology ; 163(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34614143

ABSTRACT

AROMATASE is encoded by the CYP19A1 gene and is the cytochrome enzyme responsible for estrogen synthesis in vertebrates. In most mammals, a peak of CYP19A1 gene expression occurs in the fetal XX gonad when sexual differentiation is initiated. To elucidate the role of this peak, we produced 3 lines of TALEN genetically edited CYP19A1 knockout (KO) rabbits that were devoid of any estradiol production. All the KO XX rabbits developed as females with aberrantly small ovaries in adulthood, an almost empty reserve of primordial follicles, and very few large antrum follicles. Ovulation never occurred. Our histological, immunohistological, and transcriptomic analyses showed that the estradiol surge in the XX fetal rabbit gonad is not essential to its determination as an ovary, or for meiosis. However, it is mandatory for the high proliferation and differentiation of both somatic and germ cells, and consequently for establishment of the ovarian reserve.


Subject(s)
Estrogens/metabolism , Ovary/embryology , Ovary/physiology , Sex Determination Processes/physiology , Animals , Anti-Mullerian Hormone/metabolism , Cell Differentiation , Cell Proliferation , Cytochrome P450 Family 19/metabolism , Estradiol/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gonads , INDEL Mutation , Ovarian Follicle/physiology , Ovulation , Phenotype , Rabbits , Sex Differentiation/physiology , Testosterone/metabolism
7.
Biochem Biophys Res Commun ; 551: 1-6, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33713980

ABSTRACT

Shadoo and PrP belongs to the same protein family, whose biological function remains poorly understood. Previous experiments reported potential functional redundancies or antagonisms between these two proteins, depending on the tissue analysed. While knockdown experiments suggested the requirement of Shadoo in the absence of PrP during early mouse embryogenesis, knockout ones, on the contrary, highlighted little impact, if any, of the double-knockout of these two loci. In the present study, we reinvestigated the phenotype associated with the concomitant knockout of these two genes using newly produced FVB/N Sprn knockout mice. In this genetic background, the combined two genes' knockout induces intra-uterine growth retardations, likely resulting from placental failures highlighted by transcriptomic analyses that revealed potential redundant or antagonist roles of these two proteins in different developmental-related pathways. It also induced an increased perinatal-lethality and ascertained the role of these two loci in the lactation process.


Subject(s)
Nerve Tissue Proteins/metabolism , Prion Proteins/metabolism , Reproduction/physiology , Animals , Animals, Newborn/growth & development , Embryonic Development , Female , GPI-Linked Proteins , Genes, Lethal , Lactation/genetics , Lactation/physiology , Male , Mice , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Phenotype , Placentation , Pregnancy , Prion Proteins/deficiency , Prion Proteins/genetics , Reproduction/genetics , Transcriptome
8.
Sci Rep ; 10(1): 6765, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317725

ABSTRACT

Shadoo belongs to the prion protein family, an evolutionary conserved and extensively studied family due to the implication of PrP in Transmissible Spongiform Encephalopathies. However, the biological function of these genes remains poorly understood. While Sprn-knockdown experiments suggested an involvement of Shadoo during mouse embryonic development, Sprn-knockout experiments in 129Pas/C57BL/6J or 129Pas/FVB/NCr mice did not confirm it. In the present study, we analyzed the impact of Sprn gene invalidation in a pure FVB/NJ genetic background, using a zinc finger nuclease approach. The in-depth analysis of the derived knockout transgenic mice revealed a significant increase in embryonic lethality at early post-implantation stages, a growth retardation of young Sprn-knockout pups fed by wild type mice and a lactation defect of Sprn-knockout females. Histological and transcriptional analyses of knockout E7.5 embryos, E14.5 placentas and G7.5 mammary glands revealed specific roles of the Shadoo protein in mouse early embryogenesis, tissue development and differentiation with a potential antagonist action between PrP and Shadoo. This study thus highlights the entanglement between the proteins of the prion family.


Subject(s)
Cell Differentiation/genetics , Embryonic Development/genetics , Nerve Tissue Proteins/genetics , Prion Proteins/genetics , Animals , GPI-Linked Proteins , Humans , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Mice , Mice, Knockout , Mouse Embryonic Stem Cells/metabolism , Organogenesis/genetics , Prion Diseases/genetics , Prion Diseases/pathology
9.
PLoS Pathog ; 11(8): e1005077, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26248157

ABSTRACT

Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting a wide range of mammalian species. They are caused by prions, a proteinaceous pathogen essentially composed of PrPSc, an abnormal isoform of the host encoded cellular prion protein PrPC. Constrained steric interactions between PrPSc and PrPC are thought to provide prions with species specificity, and to control cross-species transmission into other host populations, including humans. Transgenetic expression of foreign PrP genes has been successfully and widely used to overcome the recognized resistance of mouse to foreign TSE sources. Rabbit is one of the species that exhibit a pronounced resistance to TSEs. Most attempts to infect experimentally rabbit have failed, except after inoculation with cell-free generated rabbit prions. To gain insights on the molecular determinants of the relative resistance of rabbits to prions, we generated transgenic rabbits expressing the susceptible V136R154Q171 allele of the ovine PRNP gene on a rabbit wild type PRNP New Zealand background and assessed their experimental susceptibility to scrapie prions. All transgenic animals developed a typical TSE 6-8 months after intracerebral inoculation, whereas wild type rabbits remained healthy more than 700 days after inoculation. Despite the endogenous presence of rabbit PrPC, only ovine PrPSc was detectable in the brains of diseased animals. Collectively these data indicate that the low susceptibility of rabbits to prion infection is not enciphered within their non-PrP genetic background.


Subject(s)
PrPC Proteins/genetics , Scrapie/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified , Female , Immunoblotting , Male , Mass Spectrometry , Molecular Sequence Data , Rabbits , Reverse Transcriptase Polymerase Chain Reaction , Sheep , Species Specificity
10.
PLoS One ; 9(9): e106655, 2014.
Article in English | MEDLINE | ID: mdl-25216115

ABSTRACT

In the search of new strategies to fight against obesity, we targeted a gene pathway involved in energy uptake. We have thus investigated the APOB mRNA editing protein (APOBEC1) gene pathway that is involved in fat absorption in the intestine. The APOB gene encodes two proteins, APOB100 and APOB48, via the editing of a single nucleotide in the APOB mRNA by the APOBEC1 enzyme. The APOB48 protein is mandatory for the synthesis of chylomicrons by intestinal cells to transport dietary lipids and cholesterol. We produced transgenic rabbits expressing permanently and ubiquitously a small hairpin RNA targeting the rabbit APOBEC1 mRNA. These rabbits exhibited a moderately but significantly reduced level of APOBEC1 gene expression in the intestine, a reduced level of editing of the APOB mRNA, a reduced level of synthesis of chylomicrons after a food challenge, a reduced total mass of body lipids and finally presented a sustained lean phenotype without any obvious physiological disorder. Interestingly, no compensatory mechanism opposed to the phenotype. These lean transgenic rabbits were crossed with transgenic rabbits expressing in the intestine the human APOBEC1 gene. Double transgenic animals did not present any lean phenotype, thus proving that the intestinal expression of the human APOBEC1 transgene was able to counterbalance the reduction of the rabbit APOBEC1 gene expression. Thus, a moderate reduction of the APOBEC1 dependent editing induces a lean phenotype at least in the rabbit species. This suggests that the APOBEC1 gene might be a novel target for obesity treatment.


Subject(s)
Cytidine Deaminase/genetics , Gene Expression , Gene Knockdown Techniques , RNA Interference , Weight Loss , APOBEC-1 Deaminase , Animals , Animals, Genetically Modified , Apolipoprotein B-48/blood , Base Sequence , Cholesterol/blood , Diet, High-Fat , Humans , Intestinal Mucosa/metabolism , Liver/metabolism , Molecular Sequence Data , Phenotype , RNA Editing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Rabbits , Transgenes , Triglycerides/blood
11.
PLoS One ; 8(4): e60451, 2013.
Article in English | MEDLINE | ID: mdl-23593221

ABSTRACT

The rabbit is an attractive species for the study of gonad differentiation because of its 31-day long gestation, the timing of female meiosis around birth and the 15-day delay between gonadal switch and the onset of meiosis in the female. The expression of a series of genes was thus determined by qPCR during foetal life until adulthood, completed by a histological analysis and whenever possible by an immunohistological one. Interesting gene expression profiles were recorded. Firstly, the peak of SRY gene expression that is observed in early differentiated XY gonads in numerous mammals was also seen in the rabbit, but this expression was maintained at a high level until the end of puberty. Secondly, a peak of aromatase gene expression was observed at two-thirds of the gestation in XX gonads as in many other species except in the mouse. Thirdly, the expression of STRA8 and DMC1 genes (which are known to be specifically expressed in germ cells during meiosis) was enhanced in XX gonads around birth but also slightly and significantly in XY gonads at the same time, even though no meiosis occurs in XY gonad at this stage. This was probably a consequence of the synchronous strong NANOS2 gene expression in XY gonad. In conclusion, our data highlighted some rabbit-specific findings with respect to the gonad differentiation process.


Subject(s)
Cell Differentiation , Ovary/cytology , Ovary/embryology , Testis/cytology , Testis/embryology , Animals , Biomarkers/metabolism , Female , Fetus/cytology , Fetus/embryology , Fetus/metabolism , Gene Expression Regulation, Developmental , Male , Meiosis , Mice , Ovary/metabolism , Ovum/cytology , Ovum/metabolism , Puberty , Rabbits , Species Specificity , Spermatozoa/cytology , Spermatozoa/metabolism , Testis/metabolism , Tretinoin/metabolism
12.
Transgenic Res ; 22(3): 489-500, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22961198

ABSTRACT

RNA interference is an attractive strategy to fight against viral diseases by targeting the mRNA of viral genes. Most studies have reported the transient delivery of small interfering RNA or small hairpin (shRNA) expression constructs. Here, we present the production of transgenic mice stably expressing shRNA or miRNA targeting the IE180 mRNA (immediate early gene) of the pseudorabies virus (PRV) which infects mice and farm animals. We firstly designed non-retroviral shRNA or miRNA expression vectors. Secondly, we selected the most efficient shRNA construct that targeted either the 5'part or 3'UTR of the IE mRNA and was able to knockdown the target gene expression in cultured cells, by measuring systematically the shRNA content and comparing this with the interfering effects. We then produced four lines of transgenic mice expressing different amounts of shRNA or miRNA in the brain but without signs of stimulation of innate immunity. Lastly, we tested their resistance to PRV infection. In all transgenic lines, we observed a significant resistance to viral challenge, the best being achieved with the shRNA construct targeting the 3'UTR of the IE gene. Viral DNA levels in the brains of infected mice were always lower in transgenic mice, even in animals that did not survive. Finally, this work reports an effective strategy to generate transgenic animals producing shRNA from non-retroviral expression vectors. Moreover, these mice are the first transgenic animal models producing shRNA with a significant antiviral effect but without any apparent shRNA toxicity.


Subject(s)
Disease Resistance/genetics , Mice, Transgenic , Pseudorabies/genetics , RNA, Small Interfering/genetics , Viral Proteins/genetics , 3' Untranslated Regions , Animals , Brain/virology , Disease Resistance/immunology , Genes, Immediate-Early , Herpesvirus 1, Suid/genetics , Herpesvirus 1, Suid/pathogenicity , Immunity, Innate/genetics , Mice , MicroRNAs/genetics
13.
Transgenic Res ; 17(5): 783-91, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18350371

ABSTRACT

RNA interference has become a widely used approach to perform gene knockdown experiments in cell cultures and more recently transgenic animals. A designed miRNA targeting the prion protein mRNA was built and expressed using the human PRNP promoter. Its efficiency was confirmed in transfected cells and it was used to generate several transgenic mouse lines. Although expressed at low levels, it was found to downregulate the endogenous mouse Prnp gene expression to an extent that appears to be directly related with the transgene expression level and that could reach up to 80% inhibition. This result highlights the potential and limitations of the RNA interference approach when applied to disease resistance.


Subject(s)
Prions/genetics , RNA Interference , Animals , Base Sequence , Cell Line , DNA Primers , Down-Regulation , Genetic Vectors , Mice , Mice, Transgenic , MicroRNAs/genetics , PrPC Proteins/genetics , Prion Proteins
14.
Gene ; 401(1-2): 97-107, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17692477

ABSTRACT

Distal control of the whey acidic protein (WAP) locus was studied using a transgenic approach. A series of pig genomic fragments encompassing increasing DNA lengths upstream of the mammary specific whey acidic protein (WAP) gene transcription start point (tsp) and 5 kb downstream were used for microinjection in mouse fertilized eggs. Our data pointed out three regions as potent regulators for WAP but not for RAMP3 gene expression (a non mammary-specific gene located 30 kb upstream of the WAP gene). WAP gene activating elements were present in the -80 kb to -30 kb and -145 kb to -130 kb regions whereas inhibitors were present in the -130 kb to -80 kb region. The stimulatory regions were characterized by peaks of histone H4 acetylation and a poor nucleosome occupancy in lactating sow mammary glands but not in liver. These data reveal for the first time the existence of several remote potent regulatory regions of the pig WAP gene.


Subject(s)
Gene Expression Regulation , Milk Proteins/genetics , Acetylation , Animals , Chromatin Immunoprecipitation , Chromosomes, Artificial, Bacterial , DNA/genetics , Female , Gene Dosage , Histones/metabolism , Lactation , Mammary Glands, Animal/metabolism , Mice , Mice, Transgenic , Microinjections , Milk Proteins/isolation & purification , Nucleosomes/metabolism , Pregnancy , RNA, Messenger/metabolism , Swine , Transcription Factors/metabolism , Transcription Initiation Site , Transcription, Genetic , Transgenes , Zygote/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...