Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-508962

ABSTRACT

Inhibitors of bromodomain and extra-terminal proteins (iBETs), including JQ-1, have been suggested as potential therapeutics against SARS-CoV-2 infection. However, molecular mechanisms underlying JQ-1-induced antiviral activity and its susceptibility to viral antagonism remain incompletely understood. iBET treatment transiently inhibited infection by SARS-CoV-2 variants and SARS-CoV, but not MERS-CoV. Our functional assays confirmed JQ-1-mediated downregulation of ACE2 expression and multi-omics analysis uncovered induction of an antiviral NRF-2-mediated cytoprotective response as an additional antiviral component of JQ-1 treatment. Serial passaging of SARS-CoV-2 in the presence of JQ-1 resulted in predominance of ORF6-deficient variants. JQ-1 antiviral activity was transient in human bronchial airway epithelial cells (hBAECs) treated prior to infection and absent when administered therapeutically. We propose that JQ-1 exerts pleiotropic effects that collectively induce a transient antiviral state that is ultimately nullified by an established SARS-CoV-2 infection, raising questions on their clinical suitability in the context of COVID-19.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22277255

ABSTRACT

Glycoprotein 90K, encoded by the interferon-stimulated gene LGALS3BP, displays broad antiviral activity. It reduces HIV-1 infectivity by interfering with Env maturation and virion incorporation, and increases survival of Influenza A virus-infected mice via antiviral innate immune signaling. Here, we analyzed the expression of 90K/LGALS3BP in 44 hospitalized COVID-19 patients. 90K protein serum levels were significantly elevated in COVID-19 patients compared to uninfected sex- and age-matched controls. Furthermore, PBMC-associated concentrations of 90K protein were overall reduced by SARS-CoV-2 infection in vivo, suggesting enhanced secretion into the extracellular space. Mining of published PBMC scRNA-seq datasets uncovered monocyte-specific induction of LGALS3BP mRNA expression in COVID-19 patients. In functional assays, neither 90K overexpression in susceptible cell lines nor exogenous addition of purified 90K consistently inhibited SARS-CoV-2 infection. Our data suggests that 90K/LGALS3BP contributes to the global type I IFN response during SARS-CoV-2 infection in vivo without displaying detectable antiviral properties.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-492138

ABSTRACT

Vaccines are a cornerstone in COVID-19 pandemic management. Here, we compare immune responses to and preclinical efficacy of the mRNA vaccine BNT162b2, an adenovirus-vectored spike vaccine, and the live-attenuated-virus vaccine candidate sCPD9 after single and double vaccination in Syrian hamsters. All regimens containing sCPD9 showed superior efficacy. The robust immunity elicited by sCPD9 was evident in a wide range of immune parameters after challenge with heterologous SARS-CoV-2 including rapid viral clearance, reduced tissue damage, fast differentiation of pre-plasmablasts, strong systemic and mucosal humoral responses, and rapid recall of memory T cells from lung tissue. Our results demonstrate that use of live-attenuated vaccines may offer advantages over available COVID-19 vaccines, specifically when applied as booster, and may provide a solution for containment of the COVID-19 pandemic.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-480527

ABSTRACT

Cell-intrinsic responses mounted in vivo in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or are, at least partially, resulting from physical interaction with virus particles, remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. Bulk and single cell RNA-sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes, but not pro-inflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG base-line profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, non-productive physical interaction of PBMCs with SARS-CoV-2-but not SARS-CoV particles stimulates JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21266249

ABSTRACT

PurposeSix-19% of critically ill COVID-19 patients display circulating auto-antibodies against type I interferons (IFN-AABs). Here, we establish a clinically applicable strategy for early identification of IFN-AAB-positive patients for potential subsequent clinical interventions. MethodsWe analysed sera of 430 COVID-19 patients with severe and critical disease from four hospitals for presence of IFN-AABs by ELISA. Binding specificity and neutralizing activity were evaluated via competition assay and virus-infection-based neutralization assay. We defined clinical parameters associated with IFN-AAB positivity. In a subgroup of critically ill patients, we analyzed effects of therapeutic plasma exchange (TPE) on the levels of IFN-AABs, SARS-CoV-2 antibodies and clinical outcome. ResultsThe prevalence of neutralizing AABs to IFN- and IFN-{omega} in COVID-19 patients was 4.2% (18/430), while being undetectable in an uninfected control cohort. Neutralizing IFN-AABs were detectable exclusively in critically affected, predominantly male (83%) patients (7.6% IFN- and 4.6% IFN-{omega} in 207 patients with critical COVID-19). IFN-AABs were present early post-symptom onset and at the peak of disease. Fever and oxygen requirement at hospital admission co-presented with neutralizing IFN-AAB positivity. IFN-AABs were associated with higher mortality (92.3% versus 19.1 % in patients without IFN-AABs). TPE reduced levels of IFN-AABs in three of five patients and may increase survival of IFN-AAB-positive patients compared to those not undergoing TPE. ConclusionIFN-AABs may serve as early biomarker for development of severe COVID-19. We propose to implement routine screening of hospitalized COVID-19 patients according to our algorithm for rapid identification of patients with IFN-AABs who most likely benefit from specific therapies.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-465121

ABSTRACT

Epidemiological data demonstrate that SARS-CoV-2 variants of concern (VOC) B.1.1.7 and B.1.617.2 are more transmissible and infections are associated with a higher mortality than non-VOC virus infections. Phenotypic properties underlying their enhanced spread in the human population remain unknown. B.1.1.7 virus isolates displayed inferior or equivalent spread in most cell lines and primary cells compared to an ancestral B.1 SARS-CoV-2, and were outcompeted by the latter. Lower infectivity and delayed entry kinetics of B.1.1.7 viruses were accompanied by inefficient proteolytic processing of spike. B.1.1.7 viruses failed to escape from neutralizing antibodies, but slightly dampened induction of innate immunity. The bronchial cell line NCI-H1299 supported 24- and 595-fold increased growth of B.1.1.7 and B.1.617.2 viruses, respectively, in the absence of detectable ACE2 expression and in a spike-determined fashion. Superior spread in NCI-H1299 cells suggests that VOCs employ a distinct set of cellular cofactors that may be unavailable in standard cell lines.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-450190

ABSTRACT

Emerging variants of concern (VOCs) drive the SARS-CoV-2 pandemic. We assessed VOC B.1.1.7, now prevalent in several countries, and VOC B.1.351, representing the greatest threat to populations with immunity to the early SARS-CoV-2 progenitors. B.1.1.7 showed a clear fitness advantage over the progenitor variant (wt-S614G) in ferrets and two mouse models, where the substitutions in the spike glycoprotein were major drivers for fitness advantage. In the "superspreader" hamster model, B.1.1.7 and wt-S614G had comparable fitness, whereas B.1.351 was outcompeted. The VOCs had similar replication kinetics as compared to wt-S614G in human airway epithelial cultures. Our study highlights the importance of using multiple models for complete fitness characterization of VOCs and demonstrates adaptation of B.1.1.7 towards increased upper respiratory tract replication and enhanced transmission in vivo. Summary sentenceB.1.1.7 VOC outcompetes progenitor SARS-CoV-2 in upper respiratory tract replication competition in vivo.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-444275

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic is a major health burden. Volatile garlic organosulfur compounds, such as the thiol-reactive allicin (diallyl thiosulfinate) exert strong antimicrobial activity against various respiratory pathogens. Here, we investigated the antiviral activity of allicin against SARS-CoV-2 in infected Vero E6 and Calu-3 lung cells. Calu-3 cells showed greater allicin tolerance due >4-fold increased GSH levels compared to Vero E6. However, biocompatible allicin doses efficiently inhibited viral replication in both cell lines. Proteome analyses of SARS-CoV-2 infected Calu-3 cells revealed a strong induction of the antiviral interferon-stimulated gene (ISG) signature (e.g. cGAS, Mx1, IFIT, IFIH, IFI16, IFI44, 25OAS and ISG15), pathways of vesicular transport, tight junctions (KIF5A/B/C, OSBPL2, CLTC1, ARHGAP17) and ubiquitin modification (UBE2L3/5), as well as reprogramming of host metabolism, transcription and translation. Allicin abrogated the ISG host response and reverted the host cellular pathways to levels of uninfected Calu-3 cells, confirming the antiviral and immunomodulatory activity of allicin in the host proteome. Thus, biocompatible doses of allicin could be promising for protection of lung cells against SARS-CoV-2.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-079194

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global health threat with more than two million infected people since its emergence in late 2019. Detailed knowledge of the molecular biology of the infection is indispensable for understanding of the viral replication, host responses, and disease progression. We provide gene expression profiles of SARS-CoV and SARS-CoV-2 infections in three human cell lines (H1299, Caco-2 and Calu-3 cells), using bulk and single-cell transcriptomics. Small RNA profiling showed strong expression of the immunity and inflammation-associated microRNA miRNA-155 upon infection with both viruses. SARS-CoV-2 elicited approximately two-fold higher stimulation of the interferon response compared to SARS-CoV in the permissive human epithelial cell line Calu-3, and induction of cytokines such as CXCL10 or IL6. Single cell RNA sequencing data showed that canonical interferon stimulated genes such as IFIT2 or OAS2 were broadly induced, whereas interferon beta (IFNB1) and lambda (IFNL1-4) were expressed only in a subset of infected cells. In addition, temporal resolution of transcriptional responses suggested interferon regulatory factors (IRFs) activities precede that of nuclear factor-{kappa}B (NF-{kappa}B). Lastly, we identified heat shock protein 90 (HSP90) as a protein relevant for the infection. Inhibition of the HSP90 charperone activity by Tanespimycin/17-N-allylamino-17-demethoxygeldanamycin (17-AAG) resulted in a reduction of viral replication, and of TNF and IL1B mRNA levels. In summary, our study established in vitro cell culture models to study SARS-CoV-2 infection and identified HSP90 protein as potential drug target for therapeutic intervention of SARS-CoV-2 infection.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-997254

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses an acute threat to public health and the world economy, especially because no approved specific drugs or vaccines are available. Pharmacological modulation of metabolism-dependent cellular pathways such as autophagy reduced propagation of highly pathogenic Middle East respiratory syndrome (MERS)-CoV. Here we show that SARS-CoV-2 infection limits autophagy by interfering with multiple metabolic pathways and that compound-driven interventions aimed at autophagy induction reduce SARS-CoV-2 propagation in vitro. In-depth analyses of autophagy signaling and metabolomics indicate that SARS-CoV-2 reduces glycolysis and protein translation by limiting activation of AMP-protein activated kinase (AMPK) and mammalian target of rapamycin complex 1 (mTORC1). Infection also downregulates autophagy-inducing spermidine, and facilitates AKT1/SKP2-dependent degradation of autophagy-initiating Beclin-1 (BECN1). Targeting of these pathways by exogenous administration of spermidine, AKT inhibitor MK-2206, and the Beclin-1 stabilizing, antihelminthic drug niclosamide inhibited SARS-CoV-2 propagation by 85, 88, and >99%, respectively. In sum, SARS-CoV-2 infection causally diminishes autophagy. A clinically approved and well-tolerated autophagy-inducing compound shows potential for evaluation as a treatment against SARS-CoV-2.

11.
Preprint in English | medRxiv | ID: ppmedrxiv-20030502

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute respiratory tract infection that emerged in late 20191,2. Initial outbreaks in China involved 13.8% cases with severe-, and 6.1% with critical courses3. This severe presentation corresponds to the usage of a virus receptor that is expressed predominantly in the lung2,4. By causing an early onset of severe symptoms, this same receptor tropism is thought to have determined pathogenicity but also aided the control of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of COVID-19 cases with mild upper respiratory tract symptoms, suggesting a potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on body site - specific virus replication, immunity, and infectivity. Here we provide a detailed virological analysis of nine cases, providing proof of active virus replication in upper respiratory tract tissues. Pharyngeal virus shedding was very high during the first week of symptoms (peak at 7.11 x 108 RNA copies per throat swab, day 4). Infectious virus was readily isolated from throat- and lung-derived samples, but not from stool samples in spite of high virus RNA concentration. Blood and urine never yielded virus. Active replication in the throat was confirmed by viral replicative RNA intermediates in throat samples. Sequence-distinct virus populations were consistently detected in throat- and lung samples of one same patient. Shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 6-12 days, but was not followed by a rapid decline of viral loads. COVID-19 can present as a mild upper respiratory tract illness. Active virus replication in the upper respiratory tract puts prospects of COVID-19 containment in perspective.

12.
Preprint in English | bioRxiv | ID: ppbiorxiv-986711

ABSTRACT

The recent emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 is a major burden for health care systems worldwide. It is important to address if the current infection control instructions based on active ingredients are sufficient. We therefore determined the virucidal activity of two alcohol-based hand rub solutions for hand disinfection recommended by the World Health Organization (WHO), as well as commercially available alcohols. Efficient SARS-CoV-2 inactivation was demonstrated for all tested alcohol-based disinfectants. These findings show the successful inactivation of SARS-CoV-2 for the first time and provide confidence in its use for the control of COVID-19. ImportanceThe current COVID-19 outbreak puts a huge burden on the worlds health care systems. Without effective therapeutics or vaccines being available, effective hygiene measure are of utmost importance to prevent viral spreading. It is therefore crucial to evaluate current infection control strategies against SARS-CoV-2. We show the inactivation of the novel coronavirus for the first time and endorse the importance of disinfectant-based hand hygiene to reduce SARS-CoV-2 transmission.

13.
Preprint in English | bioRxiv | ID: ppbiorxiv-959817

ABSTRACT

Reverse genetics has been an indispensable tool revolutionising our insights into viral pathogenesis and vaccine development. Large RNA virus genomes, such as from Coronaviruses, are cumbersome to clone and to manipulate in E. coli hosts due to size and occasional instability1-3. Therefore, an alternative rapid and robust reverse genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform for the genetic reconstruction of diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Paramyxoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples, or synthetic DNA, and reassembled in one step in Saccharomyces cerevisiae using transformation associated recombination (TAR) cloning to maintain the genome as a yeast artificial chromosome (YAC). T7-RNA polymerase has been used to generate infectious RNA, which was then used to rescue viable virus. Based on this platform we have been able to engineer and resurrect chemically-synthetized clones of the recent epidemic SARS-CoV-24 in only a week after receipt of the synthetic DNA fragments. The technical advance we describe here allows to rapidly responding to emerging viruses as it enables the generation and functional characterization of evolving RNA virus variants - in real-time - during an outbreak.

SELECTION OF CITATIONS
SEARCH DETAIL
...