Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; : OF1-OF13, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967115

ABSTRACT

Targeted protein degradation (TPD) using the ubiquitin proteasome system (UPS) is a rapidly growing drug discovery modality to eliminate pathogenic proteins. Strategies for TPD have focused on heterobifunctional degraders that often suffer from poor drug-like properties, and molecular glues that rely on serendipitous discovery. Monovalent "direct" degraders represent an alternative approach, in which small molecules bind to a target protein and induce degradation of that protein through the recruitment of an E3 ligase complex. Using an ultra-high throughput cell-based screening platform, degraders of the bromodomain extraterminal protein BRD4 were identified and optimized to yield a lead compound, PLX-3618. In this paper, we demonstrate that PLX-3618 elicited UPS-mediated selective degradation of BRD4, resulting in potent antitumor activity in vitro and in vivo. Characterization of the degradation mechanism identified DCAF11 as the E3 ligase required for PLX-3618-mediated degradation of BRD4. Protein-protein interaction studies verified a BRD4:PLX-3618:DCAF11 ternary complex, and mutational studies provided further insights into the DCAF11-mediated degradation mechanism. Collectively, these results demonstrate the discovery and characterization of a novel small molecule that selectively degrades BRD4 through the recruitment of the E3 substrate receptor, DCAF11, and promotes potent antitumor activity in vivo.

2.
Mol Cancer Ther ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907538

ABSTRACT

Targeted protein degradation (TPD) using the ubiquitin proteasome system (UPS) is a rapidly growing drug discovery modality to eliminate pathogenic proteins. Strategies for TPD have focused on heterobifunctional degraders that often suffer from poor drug-like properties, and molecular glues that rely on serendipitous discovery. Monovalent "direct" degraders represent an alternative approach, in which small molecules bind to a target protein and induce degradation of that protein through the recruitment of an E3 ligase complex. Using an ultra-high throughput cell-based screening platform, degraders of the bromodomain extra-terminal (BET) protein BRD4 were identified and optimized to yield a lead compound, PLX-3618. In this paper, we demonstrate that PLX-3618 elicited UPS-mediated selective degradation of BRD4, resulting in potent anti-tumor activity in vitro and in vivo. Characterization of the degradation mechanism identified DCAF11 as the E3 ligase required for PLX-3618-mediated degradation of BRD4. Protein-protein interaction studies verified a BRD4:PLX-3618:DCAF11 ternary complex, and mutational studies provided further insights into the DCAF11-mediated degradation mechanism. Collectively, these results demonstrate the discovery and characterization of a novel small molecule that selectively degrades BRD4 through the recruitment of the E3 substrate receptor, DCAF11, and promotes potent anti-tumor activity in vivo.

3.
Endocrinology ; 162(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-33724348

ABSTRACT

The mammary gland is a hormone sensitive organ that is susceptible to endocrine-disrupting chemicals (EDCs) during the vulnerable periods of parous reorganization (ie, pregnancy, lactation, and involution). Pregnancy is believed to have long-term protective effects against breast cancer development; however, it is unknown if EDCs can alter this effect. We examined the long-term effects of propylparaben, a common preservative used in personal care products and foods, with estrogenic properties, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 20, 100, or 10 000 µg/kg/day propylparaben throughout pregnancy and lactation. Unexposed nulliparous females were also evaluated. Five weeks post-involution, mammary glands were collected and assessed for changes in histomorphology, hormone receptor expression, immune cell number, and gene expression. For several parameters of mammary gland morphology, propylparaben reduced the effects of parity. Propylparaben also increased proliferation, but not stem cell number, and induced modest alterations to expression of ERα-mediated genes. Finally, propylparaben altered the effect of parity on the number of several immune cell types in the mammary gland. These results suggest that propylparaben, at levels relevant to human exposure, can interfere with the effects of parity on the mouse mammary gland and induce long-term alterations to mammary gland structure. Future studies should address if propylparaben exposures negate the protective effects of pregnancy on mammary cancer development.


Subject(s)
Lactation/drug effects , Mammary Glands, Animal/drug effects , Parabens/toxicity , Prenatal Exposure Delayed Effects , Animals , Cells, Cultured , Endocrine Disruptors/toxicity , Female , Male , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/pathology , Maternal Exposure/adverse effects , Mice , Mice, Inbred BALB C , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology
4.
Environ Health Perspect ; 128(1): 17002, 2020 01.
Article in English | MEDLINE | ID: mdl-31939680

ABSTRACT

BACKGROUND: Endocrine-disrupting chemicals have been shown to have broad effects on development, but their mutagenic actions that can lead to cancer have been less clearly demonstrated. Physiological levels of estrogen have been shown to stimulate DNA damage in breast epithelial cells through mechanisms mediated by estrogen-receptor alpha (ERα). Benzophenone-3 (BP-3) and propylparaben (PP) are xenoestrogens found in the urine of >96% of U.S. OBJECTIVES: We investigated the effect of BP-3 and PP on estrogen receptor-dependent transactivation and DNA damage at concentrations relevant to exposures in humans. METHODS: In human breast epithelial cells, DNA damage following treatment with 17ß-estradiol (E2), BP-3, and PP was determined by immunostaining with antibodies against γ-H2AX and 53BP1. Estrogenic responses were determined using luciferase reporter assays and gene expression. Formation of R-loops was determined with DNA: RNA hybrid-specific S9.6 antibody. Short-term exposure to the chemicals was also studied in ovariectomized mice. Immunostaining of mouse mammary epithelium was performed to quantify R-loops and DNA damage in vivo. RESULTS: Concentrations of 1µM and 5µM BP-3 or PP increased DNA damage similar to that of E2 treatment in a ERα-dependent manner. However, BP-3 and PP had limited transactivation of target genes at 1µM and 5µM concentrations. BP-3 and PP exposure caused R-loop formation in a normal human breast epithelial cell line when ERα was introduced. R-loops and DNA damage were also detected in mammary epithelial cells of mice treated with BP-3 and PP. CONCLUSIONS: Acute exposure to xenoestrogens (PP and BP-3) in mice induce DNA damage mediated by formation of ERα-dependent R-loops at concentrations 10-fold lower than those required for transactivation. Exposure to these xenoestrogens may cause deleterious estrogenic responses, such as DNA damage, in susceptible individuals. https://doi.org/10.1289/EHP5221.


Subject(s)
Benzophenones/toxicity , Environmental Pollutants/toxicity , Parabens/toxicity , Animals , Cell Line, Tumor , Epithelial Cells , Humans , Mice , R-Loop Structures/drug effects , Receptors, Estrogen/drug effects , Toxicity Tests
5.
PLoS One ; 12(5): e0177825, 2017.
Article in English | MEDLINE | ID: mdl-28542616

ABSTRACT

The CrbS/R two-component signal transduction system is a conserved regulatory mechanism through which specific Gram-negative bacteria control acetate flux into primary metabolic pathways. CrbS/R governs expression of acetyl-CoA synthase (acsA), an enzyme that converts acetate to acetyl-CoA, a metabolite at the nexus of the cell's most important energy-harvesting and biosynthetic reactions. During infection, bacteria can utilize this system to hijack host acetate metabolism and alter the course of colonization and pathogenesis. In toxigenic strains of Vibrio cholerae, CrbS/R-dependent expression of acsA is required for virulence in an arthropod model. Here, we investigate the function of the CrbS/R system in Pseudomonas aeruginosa, Pseudomonas entomophila, and non-toxigenic V. cholerae strains. We demonstrate that its role in acetate metabolism is conserved; this system regulates expression of the acsA gene and is required for growth on acetate as a sole carbon source. As a first step towards describing the mechanism of signaling through this pathway, we identify residues and domains that may be critical for phosphotransfer. We further demonstrate that although CrbS, the putative hybrid sensor kinase, carries both a histidine kinase domain and a receiver domain, the latter is not required for acsA transcription. In order to determine whether our findings are relevant to pathogenesis, we tested our strains in a Drosophila model of oral infection previously employed for the study of acetate-dependent virulence by V. cholerae. We show that non-toxigenic V. cholerae strains lacking CrbS or CrbR are significantly less virulent than are wild-type strains, while P. aeruginosa and P. entomophila lacking CrbS or CrbR are fully pathogenic. Together, the data suggest that the CrbS/R system plays a central role in acetate metabolism in V. cholerae, P. aeruginosa, and P. entomophila. However, each microbe's unique environmental adaptations and pathogenesis strategies may dictate conditions under which CrbS/R-mediated acs expression is most critical.


Subject(s)
Acetate-CoA Ligase/genetics , Bacterial Proteins/metabolism , Environment , Genetic Variation , Transcription, Genetic , Acetates/metabolism , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Conserved Sequence , Gene Expression Regulation, Bacterial , Hemolysin Proteins/metabolism , Protein Domains , Pseudomonas aeruginosa/cytology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Sequence Deletion , Sequence Homology, Nucleic Acid , Signal Transduction , Vibrio cholerae/cytology , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Vibrio cholerae/pathogenicity , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...