Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38979374

ABSTRACT

Process Analytical Technologies (PAT) used to monitor and control manufacturing processes are crucial for efficient and automated bioprocessing, which is in congruence with lights-off-manufacturing and Industry 4.0 initiatives. As biomanufacturing seeks to realize more high-throughput and automated operation, an increasing need for multimodal analysis of process metrics becomes essential. Herein, we detail a series of methods for analyzing product yield from a bioreactor and how to conduct cross-method comparisons. We employ a model system of Escherichia coli (E. coli) expression of green fluorescent protein (GFP), which is a simple, cost effective model for students and educators to replicate at different scales. GFP is an ideal analytical marker as it is easy to visualize due to its fluorescence which indicates cellular protein expression, cell localization and physiological changes of the cell population. In this study, samples from a 300 L bioreactor with GFP-expressing E. coli are analyzed to improve product yield and bioprocessing efficiency. Utilizing a fed-batch process for enhanced cell density and product titer, this bioreactor runs on a 24-hour schedule from inoculation to GFP induction and final harvest. To reliably quantify relative GFP expression and E. coli proliferation, we provide simple protocols and example results for comparing three different analytical methods: (1) in-line bioreactor measurements, (2) plate reader assays, and (3) microscopy. The GFP and cell density results follow similar trends based on the various inline and offline analytical methods and show a peak of GFP expression and cell density between 12.5 and 18 hours post inoculation.

2.
Biotechnol Adv ; 74: 108391, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38848795

ABSTRACT

Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.


Subject(s)
Genetic Vectors , Humans , Animals , Genetic Therapy , Viruses/genetics , Viruses/isolation & purification , Quality Control
3.
PLOS Digit Health ; 3(5): e0000343, 2024 May.
Article in English | MEDLINE | ID: mdl-38743651

ABSTRACT

Knee osteoarthritis is a major cause of global disability and is a major cost for the healthcare system. Lower extremity loading is a determinant of knee osteoarthritis onset and progression; however, technology that assists rehabilitative clinicians in optimizing key metrics of lower extremity loading is significantly limited. The peak vertical component of the ground reaction force (vGRF) in the first 50% of stance is highly associated with biological and patient-reported outcomes linked to knee osteoarthritis symptoms. Monitoring and maintaining typical vGRF profiles may support healthy gait biomechanics and joint tissue loading to prevent the onset and progression of knee osteoarthritis. Yet, the optimal number of sensors and sensor placements for predicting accurate vGRF from accelerometry remains unknown. Our goals were to: 1) determine how many sensors and what sensor locations yielded the most accurate vGRF loading peak estimates during walking; and 2) characterize how prescribing different loading conditions affected vGRF loading peak estimates. We asked 20 young adult participants to wear 5 accelerometers on their waist, shanks, and feet and walk on a force-instrumented treadmill during control and targeted biofeedback conditions prompting 5% underloading and overloading vGRFs. We trained and tested machine learning models to estimate vGRF from the various sensor accelerometer inputs and identified which combinations were most accurate. We found that a neural network using one accelerometer at the waist yielded the most accurate loading peak vGRF estimates during walking, with average errors of 4.4% body weight. The waist-only configuration was able to distinguish between control and overloading conditions prescribed using biofeedback, matching measured vGRF outcomes. Including foot or shank acceleration signals in the model reduced accuracy, particularly for the overloading condition. Our results suggest that a system designed to monitor changes in walking vGRF or to deploy targeted biofeedback may only need a single accelerometer located at the waist for healthy participants.

4.
Anal Chem ; 96(23): 9593-9600, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804040

ABSTRACT

The limited biomolecular and functional stability of lentiviral vectors (LVVs) for cell therapy poses the need for analytical tools that can monitor their titers and activity throughout the various steps of expression and purification. In this study, we describe a rapid (25 min) and reproducible (coefficient of variance ∼0.5-2%) method that leverages size exclusion chromatography coupled with multiangle light scattering detection (SEC-MALS) to determine size, purity, and particle count of LVVs purified from bioreactor harvests. The SEC-MALS data were corroborated by orthogonal methods, namely, dynamic light scattering (DLS) and transmission electron microscopy. The method was also evaluated for robustness in the range of 2.78 × 105-2.67 × 107 particles per sample. Notably, MALS-based particle counts correlated with the titer of infectious LVVs measured via transduction assays (R2 = 0.77). Using a combination of SEC-MALS and DLS, we discerned the effects of purification parameters on LVV quality, such as the separation between heterogeneous LV, which can facilitate critical decision-making in the biomanufacturing of gene and cell therapies.


Subject(s)
Dynamic Light Scattering , Lentivirus , Lentivirus/genetics , Lentivirus/isolation & purification , Humans , Chromatography, Gel , HEK293 Cells , Particle Size , Genetic Vectors/genetics , Genetic Vectors/isolation & purification
5.
Sensors (Basel) ; 24(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38610546

ABSTRACT

The study of plant electrophysiology offers promising techniques to track plant health and stress in vivo for both agricultural and environmental monitoring applications. Use of superficial electrodes on the plant body to record surface potentials may provide new phenotyping insights. Bacterial nanocellulose (BNC) is a flexible, optically translucent, and water-vapor-permeable material with low manufacturing costs, making it an ideal substrate for non-invasive and non-destructive plant electrodes. This work presents BNC electrodes with screen-printed carbon (graphite) ink-based conductive traces and pads. It investigates the potential of these electrodes for plant surface electrophysiology measurements in comparison to commercially available standard wet gel and needle electrodes. The electrochemically active surface area and impedance of the BNC electrodes varied based on the annealing temperature and time over the ranges of 50 °C to 90 °C and 5 to 60 min, respectively. The water vapor transfer rate and optical transmittance of the BNC substrate were measured to estimate the level of occlusion caused by these surface electrodes on the plant tissue. The total reduction in chlorophyll content under the electrodes was measured after the electrodes were placed on maize leaves for up to 300 h, showing that the BNC caused only a 16% reduction. Maize leaf transpiration was reduced by only 20% under the BNC electrodes after 72 h compared to a 60% reduction under wet gel electrodes in 48 h. On three different model plants, BNC-carbon ink surface electrodes and standard invasive needle electrodes were shown to have a comparable signal quality, with a correlation coefficient of >0.9, when measuring surface biopotentials induced by acute environmental stressors. These are strong indications of the superior performance of the BNC substrate with screen-printed graphite ink as an electrode material for plant surface biopotential recordings.


Subject(s)
Graphite , Agriculture , Biological Transport , Carbon , Chlorophyll , Steam
6.
Anal Chem ; 96(10): 4076-4085, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38408165

ABSTRACT

In this work, direct electron transfer (DET)-type extended gate field effect transistor (EGFET) enzymatic sensors were developed by employing DET-type or quasi-DET-type enzymes to detect glucose or lactate in both 100 mM potassium phosphate buffer and artificial sweat. The system employed either a DET-type glucose dehydrogenase or a quasi-DET-type lactate oxidase, the latter of which was a mutant enzyme with suppressed oxidase activity and modified with amine-reactive phenazine ethosulfate. These enzymes were immobilized on the extended gate electrodes. Changes in the measured transistor drain current (ID) resulting from changes to the working electrode junction potential (φ) were observed as glucose and lactate concentrations were varied. Calibration curves were generated for both absolute measured ID and ΔID (normalized to a blank solution containing no substrate) to account for variations in enzyme immobilization and conjugation to the mediator and variations in reference electrode potential. This work resulted in a limit of detection of 53.9 µM (based on ID) for glucose and 2.12 mM (based on ID) for lactate, respectively. The DET-type and Quasi-DET-type EGFET enzymatic sensor was then modeled using the case of the lactate sensor as an equivalent circuit to validate the principle of sensor operation being driven through OCP changes caused by the substrate-enzyme interaction. The model showed slight deviation from collected empirical data with 7.3% error for the slope and 8.6% error for the y-intercept.


Subject(s)
Biosensing Techniques , Electrons , Biosensing Techniques/methods , Glucose/metabolism , Glucose 1-Dehydrogenase/metabolism , Lactic Acid , Enzymes, Immobilized/metabolism , Electrodes
7.
Annu Rev Biomed Eng ; 26(1): 197-221, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38346276

ABSTRACT

Insertable biosensor systems are medical diagnostic devices with two primary components: an implantable biosensor within the body and a wearable monitor that can remotely interrogate the biosensor from outside the body. Because the biosensor does not require a physical connection to the electronic monitor, insertable biosensor systems promise improved patient comfort, reduced inflammation and infection risk, and extended operational lifetimes relative to established percutaneous biosensor systems. However, the lack of physical connection also presents technical challenges that have necessitated new innovations in developing sensing chemistries, transduction methods, and communication modalities. In this review, we discuss the key developments that have made insertables a promising option for longitudinal biometric monitoring and highlight the essential needs and existing development challenges to realizing the next generation of insertables for extended-use diagnostic and prognostic devices.


Subject(s)
Biosensing Techniques , Equipment Design , Wearable Electronic Devices , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Humans , Prostheses and Implants , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods
8.
Biotechnol J ; 19(1): e2300230, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37728197

ABSTRACT

Adeno-associated viruses (AAVs) have acquired a central role in modern medicine as delivery agents for gene therapies targeting rare diseases. While new AAVs with improved tissue targeting, potency, and safety are being introduced, their biomanufacturing technology is lagging. In particular, the AAV purification pipeline hinges on protein ligands for the affinity-based capture step. While featuring excellent AAV binding capacity and selectivity, these ligands require strong acid (pH <3) elution conditions, which can compromise the product's activity and stability. Additionally, their high cost and limited lifetime has a significant impact on the price tag of AAV-based therapies. Seeking to introduce a more robust and affordable affinity technology, this study introduces a cohort of peptide ligands that (i) mimic the biorecognition activity of the AAV receptor (AAVR) and anti-AAV antibody A20, (ii) enable product elution under near-physiological conditions (pH 6.0), and (iii) grant extended reusability by withstanding multiple regenerations. A20-mimetic CYIHFSGYTNYNPSLKSC and AAVR-mimetic CVIDGSQSTDDDKIC demonstrated excellent capture of serotypes belonging to distinct clones/clades - namely, AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. This corroborates the in silico models documenting their ability to target regions of the viral capsid that are conserved across all serotypes. CVIDGSQSTDDDKIC-Toyopearl resin features binding capacity (≈1014 vp mL-1 ) and product yields (≈60%-80%) on par with commercial adsorbents, and purifies AAV2 from HEK293 and Sf9 cell lysates with high recovery (up to 78%), reduction of host cell proteins (up to 700-fold), and high transduction activity (up to 65%).


Subject(s)
Capsid , Dependovirus , Humans , Dependovirus/genetics , Capsid/chemistry , HEK293 Cells , Transduction, Genetic , Peptides/metabolism , Ligands , Chromatography, Affinity , Genetic Vectors/genetics
9.
Biotechnol Bioeng ; 121(2): 618-639, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37947118

ABSTRACT

The recent uptick in the approval of ex vivo cell therapies highlights the relevance of lentivirus (LV) as an enabling viral vector of modern medicine. As labile biologics, however, LVs pose critical challenges to industrial biomanufacturing. In particular, LV purification-currently reliant on filtration and anion-exchange or size-exclusion chromatography-suffers from long process times and low yield of transducing particles, which translate into high waiting time and cost to patients. Seeking to improve LV downstream processing, this study introduces peptides targeting the enveloped protein Vesicular stomatitis virus G (VSV-G) to serve as affinity ligands for the chromatographic purification of LV particles. An ensemble of candidate ligands was initially discovered by implementing a dual-fluorescence screening technology and a targeted in silico approach designed to identify sequences with high selectivity and tunable affinity. The selected peptides were conjugated on Poros resin and their LV binding-and-release performance was optimized by adjusting the flow rate, composition, and pH of the chromatographic buffers. Ligands GKEAAFAA and SRAFVGDADRD were selected for their high product yield (50%-60% of viral genomes; 40%-50% of HT1080 cell-transducing particles) upon elution in PIPES buffer with 0.65 M NaCl at pH 7.4. The peptide-based adsorbents also presented remarkable values of binding capacity (up to 3·109 TU per mL of resin, or 5·1011 vp per mL of resin, at the residence time of 1 min) and clearance of host cell proteins (up to a 220-fold reduction of HEK293 HCPs). Additionally, GKEAAFAA demonstrated high resistance to caustic cleaning-in-place (0.5 M NaOH, 30 min) with no observable loss in product yield and quality.


Subject(s)
Lentivirus , Vesicular Stomatitis , Animals , Humans , Lentivirus/genetics , Lentivirus/metabolism , HEK293 Cells , Peptides/metabolism , Vesiculovirus/genetics , Genetic Vectors
10.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961220

ABSTRACT

Microphysiological systems (MPS) incorporate physiologically relevant microanatomy, mechanics, and cells to mimic tissue function. Reproducible and standardized in vitro models of tissue barriers, such as the blood-tissue interface (BTI), are critical for next-generation MPS applications in research and industry. Many models of the BTI are limited by the need for semipermeable membranes, use of homogenous cell populations, or 2D culture. These factors limit the relevant endothelial-epithelial contact and 3D transport, which would best mimic the BTI. Current models are also difficult to assemble, requiring precise alignment and layering of components. The work reported herein details the engineering of a BTI-on-a-chip (BTI Chip) that addresses current disadvantages by demonstrating a single layer, membrane-free design. Laminar flow profiles, photocurable hydrogel scaffolds, and human cell lines were used to construct a BTI Chip that juxtaposes an endothelium in direct contact with a 3D engineered tissue. A biomaterial composite, gelatin methacryloyl and 8-arm polyethylene glycol thiol, was used for in situ fabrication of a tissue structure within a Y-shaped microfluidic device. To produce the BTI, a laminar flow profile was achieved by flowing a photocurable precursor solution alongside phosphate buffered saline. Immediately after stopping flow, the scaffold underwent polymerization through a rapid exposure to UV light (<300 mJ·cm-2). After scaffold formation, blood vessel endothelial cells were introduced and allowed to adhere directly to the 3D tissue scaffold, without barriers or phase guides. Fabrication of the BTI Chip was demonstrated in both an epithelial tissue model and blood-brain barrier (BBB) model. In the epithelial model, scaffolds were seeded with human dermal fibroblasts. For the BBB models, scaffolds were seeded with the immortalized glial cell line, SVGP12. The BTI Chip microanatomy was analyzed post facto by immunohistochemistry, showing the uniform production of a patent endothelium juxtaposed with a 3D engineered tissue. Fluorescent tracer molecules were used to characterize the permeability of the BTI Chip. The BTI Chips were challenged with an efflux pump inhibitor, cyclosporine A, to assess physiological function and endothelial cell activation. Operation of physiologically relevant BTI Chips and a novel means for high-throughput MPS generation was demonstrated, enabling future development for drug candidate screening and fundamental biological investigations.

11.
Cell Mol Gastroenterol Hepatol ; 16(5): 823-846, 2023.
Article in English | MEDLINE | ID: mdl-37562653

ABSTRACT

BACKGROUND AND AIMS: Hypoxia in the intestinal epithelium can be caused by acute ischemic events or chronic inflammation in which immune cell infiltration produces inflammatory hypoxia starving the mucosa of oxygen. The epithelium has the capacity to regenerate after some ischemic and inflammatory conditions suggesting that intestinal stem cells (ISCs) are highly tolerant to acute and chronic hypoxia; however, the impact of hypoxia on human ISC (hISC) function has not been reported. Here we present a new microphysiological system (MPS) to investigate how hypoxia affects hISCs from healthy donors and test the hypothesis that prolonged hypoxia modulates how hISCs respond to inflammation-associated interleukins (ILs). METHODS: hISCs were exposed to <1.0% oxygen in the MPS for 6, 24, 48, and 72 hours. Viability, hypoxia-inducible factor 1a (HIF1a) response, transcriptomics, cell cycle dynamics, and response to cytokines were evaluated in hISCs under hypoxia. HIF stabilizers and inhibitors were screened to evaluate HIF-dependent responses. RESULTS: The MPS enables precise, real-time control and monitoring of oxygen levels at the cell surface. Under hypoxia, hISCs maintain viability until 72 hours and exhibit peak HIF1a at 24 hours. hISC activity was reduced at 24 hours but recovered at 48 hours. Hypoxia induced increases in the proportion of hISCs in G1 and expression changes in 16 IL receptors. Prolyl hydroxylase inhibition failed to reproduce hypoxia-dependent IL-receptor expression patterns. hISC activity increased when treated IL1ß, IL2, IL4, IL6, IL10, IL13, and IL25 and rescued hISC activity caused by 24 hours of hypoxia. CONCLUSIONS: Hypoxia pushes hISCs into a dormant but reversible proliferative state and primes hISCs to respond to a subset of ILs that preserves hISC activity. These findings have important implications for understanding intestinal epithelial regeneration mechanisms caused by inflammatory hypoxia.


Subject(s)
Inflammation , Interleukins , Humans , Interleukins/metabolism , Inflammation/metabolism , Stem Cells/metabolism , Hypoxia , Oxygen/metabolism
12.
Adv Funct Mater ; 33(14)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37576949

ABSTRACT

The use of benign stimuli to control the binding and release of labile biologics for their isolation from complex feedstocks is a key goal of modern biopharmaceutical technology. This study introduces cyclic azobenzene-peptide (CAP) hybrid ligands for the rapid and discrete photo-responsive capture and release of blood coagulation Factor VIII (FVIII). A predictive method - based on amino acid sequence and molecular architecture of CAPs - was developed to correlate the conformation of cis/trans CAP photo-isomers to FVIII binding and release. The combined in silico and in vitro analysis of FVIII:peptide interactions guided the design of a rational approach to optimize isomerization kinetics and biorecognition of CAPs. A photoaffinity adsorbent, prepared by conjugating selected CAP G-cycloAZOB[Lys-YYKHLYN-Lys]-G on translucent chromatographic beads, featured high binding capacity (> 6 mg of FVIII per mL of resin) and rapid photo-isomerization kinetics (τ < 30s) when exposed to 420-450 nm light at the intensity of 0.1 W·cm-2. The adsorbent purified FVIII from a recombinant harvest using a single mobile phase, affording high product yield (>90%), purity (>95%), and blood clotting activity. The CAPs introduced in this report demonstrate a novel route integrating gentle operational conditions in a rapid and efficient bioprocess for the purification of life-saving biotherapeutics.

13.
Biotechnol Bioeng ; 120(8): 2283-2300, 2023 08.
Article in English | MEDLINE | ID: mdl-37435968

ABSTRACT

Adeno-associated viruses (AAVs) are the vector of choice for delivering gene therapies that can cure inherited and acquired diseases. Clinical research on various AAV serotypes significantly increased in recent years alongside regulatory approvals of AAV-based therapies. The current AAV purification platform hinges on the capture step, for which several affinity resins are commercially available. These adsorbents rely on protein ligands-typically camelid antibodies-that provide high binding capacity and selectivity, but suffer from low biochemical stability and high cost, and impose harsh elution conditions (pH < 3) that can harm the transduction activity of recovered AAVs. Addressing these challenges, this study introduces peptide ligands that selectively capture AAVs and release them under mild conditions (pH = 6.0). The peptide sequences were identified by screening a focused library and modeled in silico against AAV serotypes 2 and 9 (AAV2 and AAV9) to select candidate ligands that target homologous sites at the interface of the VP1-VP2 and VP2-VP3 virion proteins with mild binding strength (KD ~ 10-5 -10- 6 M). Selected peptides were conjugated to Toyopearl resin and evaluated via binding studies against AAV2 and AAV9, demonstrating the ability to target both serotypes with values of dynamic binding capacity (DBC10% > 1013 vp/mL of resin) and product yields (~50%-80%) on par with commercial adsorbents. The peptide-based adsorbents were finally utilized to purify AAV2 from a HEK 293 cell lysate, affording high recovery (50%-80%), 80- to 400-fold reduction of host cell proteins (HCPs), and high transduction activity (up to 80%) of the purified viruses.


Subject(s)
Dependovirus , Peptides , Humans , Dependovirus/genetics , HEK293 Cells , Ligands , Peptides/genetics , Peptides/metabolism , Amino Acid Sequence , Genetic Vectors
14.
Anal Chem ; 95(27): 10368-10375, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37368953

ABSTRACT

The global pandemic caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people and paralyzed healthcare systems worldwide. Developing rapid and accurate tests to detect and quantify anti-SARS-CoV-2 antibodies in complex fluids is critical to (i) track and address the spread of SARS-CoV-2 variants with different virulence and (ii) support the industrial manufacturing and clinical administration of anti-SARS-CoV-2 therapeutic antibodies. Conventional immunoassays, such as lateral flow, ELISA, and surface plasmon resonance (SPR), are either qualitative or, when quantitative, are laborious and expensive and suffer from high variability. Responding to these challenges, this study evaluates the performance of the Dual-Affinity Ratiometric Quenching (DARQ) assay for the quantification of anti-SARS-CoV-2 antibodies in bioprocess harvests and intermediate fractions (i.e., a Chinese hamster ovary (CHO) cell culture supernatant and a purified eluate) and human fluids (i.e., saliva and plasma). Monoclonal antibodies targeting the SARS-CoV-2 nucleocapsid as well as the spike protein of the delta and omicron variants are adopted as model analytes. Additionally, conjugate pads loaded with dried protein were studied as an at-line quantification method that can be used in clinical or manufacturing laboratories. Our results indicate that the DARQ assay is a highly reproducible (coefficient of variation ∼0.5-3%) and rapid (<10 min) test, whose sensitivity (∼0.23-2.5 ng/mL), limit of detection (23-250 ng/mL), and dynamic range (70-1300 ng/mL) are independent of sample complexity, thus representing a valuable tool for monitoring anti-SARS-CoV-2 antibodies.


Subject(s)
COVID-19 , Animals , Cricetinae , Humans , COVID-19/diagnosis , SARS-CoV-2 , CHO Cells , Cricetulus , Antibodies, Viral
15.
bioRxiv ; 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36778265

ABSTRACT

Background & Aims: Hypoxia in the intestinal epithelium can be caused by acute ischemic events or conditions like Inflammatory Bowel Disease (IBD) where immune cell infiltration produces 'inflammatory hypoxia', a chronic condition that starves the mucosa of oxygen. Epithelial regeneration after ischemia and IBD suggests intestinal stem cells (ISCs) are highly tolerant to acute and chronic hypoxia; however, the impact of acute and chronic hypoxia on human ISC (hISC) properties have not been reported. Here we present a new microphysiological system (MPS) to investigate how hypoxia affects hISCs isolated from healthy human tissues. We then test the hypothesis that some inflammation-associated interleukins protect hISCs during prolonged hypoxia. Methods: hISCs were exposed to <1.0% oxygen in the MPS for 6-, 24-, 48- & 72hrs. Viability, HIF1α response, transcriptomics, cell cycle dynamics, and hISC response to cytokines were evaluated. Results: The novel MPS enables precise, real-time control and monitoring of oxygen levels at the cell surface. Under hypoxia, hISCs remain viable until 72hrs and exhibit peak HIF1α at 24hrs. hISCs lose stem cell activity at 24hrs that recovers at 48hrs of hypoxia. Hypoxia increases the proportion of hISCs in G1 and regulates hISC capacity to respond to multiple inflammatory signals. Hypoxia induces hISCs to upregulate many interleukin receptors and hISCs demonstrate hypoxia-dependent cell cycle regulation and increased organoid forming efficiency when treated with specific interleukins. Conclusions: Hypoxia primes hISCs to respond differently to interleukins than hISCs in normoxia through a transcriptional response. hISCs slow cell cycle progression and increase hISC activity when treated with hypoxia and specific interleukins. These findings have important implications for epithelial regeneration in the gut during inflammatory events.

16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1262-1265, 2022 07.
Article in English | MEDLINE | ID: mdl-36086000

ABSTRACT

Access to low-cost, rapid, individualized diagnostics at point-of-care and point-of-need is vital to minimize the impact of highly infectious viruses, such as influenza. Herein, a biosensor for detecting hemagglutinin (HA), an abundant capsid protein in H1N1 viruses, is demonstrated. A gold working electrode was functionalized with a thiol-modified, HA-binding aptamer derivatized with a methylene blue modification for redox reporting. The aptamer was characterized by surface plasmon resonance to confirm its biorecognition activity for HA. The aptasensor was characterized by square wave voltammetry to quantify the sensor's response to varying concentrations of HA. The sensor exhibited a lower limit of detection of 1.5 pM with linear detection of up to 1.2 nM in both Tris buffer and simulated human saliva, thus encompassing the clinically relevant HA range in saliva. Average sensitivity was measured at 21.083 nA·nM-1in Tris and 14.5 nA·nM-1in artificial saliva across clinically relevant HA titers. Sensor stability across time was also investigated, providing a preliminary understanding of the translational viability of the aptasensors for mobile and remote diagnostic applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Influenza A Virus, H1N1 Subtype , Influenza, Human , Aptamers, Nucleotide/chemistry , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Influenza, Human/diagnosis , Saliva
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4860-4863, 2022 07.
Article in English | MEDLINE | ID: mdl-36086659

ABSTRACT

IMDs are typically considered for chronic-use applications and a limited set of implant locations. Resorbable IMDs seek to combine advances in flexible electronics with functional soft materials to enable new applications, including acute care, aiming at temporary interfacing with soft tissues. Poly(oc-tamethylene maleate (anhydride) citrate) (POMaC) is an elasto-mer with demonstrated high biocompatibility and bioresorbability, as well as tunable stiffness and surface properties. Despite its promises, POMaC has not yet been applied in engineering flexible electronics. Herein, a POMaC-based circuit board is demonstrated and characterized. The monomer composition and thermal degradation properties of the pre-polymer was characterized. POMaC-based circuit boards were constructed using traditional microfabrication methods, including spin coating and metallization. POMaC pre-polymer and films were thermally stable to 300°C, exhibit controlled degradation in simulated physiological conditions, and are cytocompatible. Deposited traces were stable during fabrication and processing, and an LED circuit was designed and fabricated using surface mount devices on a POMaC-circuit board. The results indicate the feasibility of POMaC-based circuit boards for use in resorbable IMDs. Future work will investigate more complex circuits, fully encapsulated devices, and mechanical characterization.


Subject(s)
Electronics , Polymers , Prostheses and Implants , Surface Properties
18.
ACS Sens ; 7(7): 2037-2048, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35820167

ABSTRACT

Wearable and wireless monitoring of biomarkers such as lactate in sweat can provide a deeper understanding of a subject's metabolic stressors, cardiovascular health, and physiological response to exercise. However, the state-of-the-art wearable and wireless electrochemical systems rely on active sweat released either via high-exertion exercise, electrical stimulation (such as iontophoresis requiring electrical power), or chemical stimulation (such as by delivering pilocarpine or carbachol inside skin), to extract sweat under low-perspiring conditions such as at rest. Here, we present a continuous sweat lactate monitoring platform combining a hydrogel for osmotic sweat extraction, with a paper microfluidic channel for facilitating sweat transport and management, a screen-printed electrochemical lactate sensor, and a custom-built wireless wearable potentiostat system. Osmosis enables zero-electrical power sweat extraction at rest, while continuous evaporation at the end of a paper channel allows long-term sensing from fresh sweat. The positioning of the lactate sensors provides near-instantaneous sensing at low sweat volume, and the custom-designed potentiostat supports continuous monitoring with ultra-low power consumption. For a proof of concept, the prototype system was evaluated for continuous measurement of sweat lactate across a range of physiological activities with changing lactate concentrations and sweat rates: for 2 h at the resting state, 1 h during medium-intensity exercise, and 30 min during high-intensity exercise. Overall, this wearable system holds the potential of providing comprehensive and long-term continuous analysis of sweat lactate trends in the human body during rest and under exercising conditions.


Subject(s)
Sweat , Wearable Electronic Devices , Humans , Lactic Acid/analysis , Monitoring, Physiologic , Osmosis , Sweat/chemistry
19.
ACS Omega ; 7(23): 20006-20019, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35721944

ABSTRACT

Carbon nanotubes (CNTs) are known for their excellent conductive properties. Here, we present two novel methods, "sandwich" (sCNT) and dual deposition (DD CNT), for incorporating CNTs into electrospun polycaprolactone (PCL) and gelatin scaffolds to increase their conductance. Based on CNT percentage, the DD CNT scaffolds contain significantly higher quantities of CNTs than the sCNT scaffolds. The inclusion of CNTs increased the electrical conductance of scaffolds from 0.0 ± 0.00 kS (non-CNT) to 0.54 ± 0.10 kS (sCNT) and 5.22 ± 0.49 kS (DD CNT) when measured parallel to CNT arrays and to 0.25 ± 0.003 kS (sCNT) and 2.85 ± 1.12 (DD CNT) when measured orthogonally to CNT arrays. The inclusion of CNTs increased fiber diameter and pore size, promoting cellular migration into the scaffolds. CNT inclusion also decreased the degradation rate and increased hydrophobicity of scaffolds. Additionally, CNT inclusion increased Young's modulus and failure load of scaffolds, increasing their mechanical robustness. Murine fibroblasts were maintained on the scaffolds for 30 days, demonstrating high cytocompatibility. The increased conductivity and high cytocompatibility of the CNT-incorporated scaffolds make them appropriate candidates for future use in cardiac and neural tissue engineering.

20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 975-979, 2021 11.
Article in English | MEDLINE | ID: mdl-34891451

ABSTRACT

Longitudinal fetal health monitoring is essential for high-risk pregnancies. Heart rate and heart rate variability are prime indicators of fetal health. In this work, we implemented two neural network architectures for heartbeat detection on a set of fetal phonocardiogram signals captured using fetal Doppler and a digital stethoscope. We test the efficacy of these networks using the raw signals and the hand-crafted energy from the signal. The results show a Convolutional Neural Network is the most efficient at identifying the S1 waveforms in a heartbeat, and its performance is improved when using the energy of the Doppler signals. We further discuss issues, such as low Signal-to-Noise Ratios (SNR), present in the training of a model based on the stethoscope signals. Finally, we show that we can improve the SNR, and subsequently the performance of the stethoscope, by matching the energy from the stethoscope to that of the Doppler signal.


Subject(s)
Stethoscopes , Female , Fetal Monitoring , Heart Rate , Humans , Neural Networks, Computer , Pregnancy , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...