Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 101(12): 120503, 2008 Sep 19.
Article in English | MEDLINE | ID: mdl-18851351

ABSTRACT

Efficient simulations of quantum evolutions of spin-1/2 systems are relevant for ensemble quantum computation as well as in typical NMR experiments. We propose an efficient method to calculate the dynamics of an observable provided that the initial excitation is "local." It resorts to a single entangled pure initial state built as a superposition, with random phases, of the pure elements that compose the mixture. This ensures self-averaging of any observable, drastically reducing the calculation time. The procedure is tested for two representative systems: a spin star (cluster with random long range interactions) and a spin ladder.

2.
J Chem Phys ; 124(19): 194507, 2006 May 21.
Article in English | MEDLINE | ID: mdl-16729825

ABSTRACT

Quantum information processing relies on coherent quantum dynamics for a precise control of its basic operations. A swapping gate in a two-spin system exchanges the degenerate states |(up arrow, down arrow)> and |(down arrow, up arrow)>. In NMR, this is achieved turning on and off the spin-spin interaction b=DeltaE that splits the energy levels and induces an oscillation with a natural frequency DeltaE/Planck's. Interaction of strength Planck's/tau(SE), with an environment of neighboring spins, degrades this oscillation within a decoherence time scale tau(phi). While the experimental frequency omega and decoherence time tau(phi) were expected to be roughly proportional to b/Planck's and tau(SE), respectively, we present here experiments that show drastic deviations in both omega and tau(phi). By solving the many spin dynamics, we prove that the swapping regime is restricted to DeltaEtau(SE) similar or greater than Planck's. Beyond a critical interaction with the environment the swapping freezes and the decoherence rate drops as 1/tau(phi) proportional to (b/Planck's)2tau(SE). The transition between quantum dynamical phases occurs when omega proportional to sqrt (b/Planck's)2-(k/tau(SE)2 becomes imaginary, resembling an overdamped classical oscillator. Here, 0< or =k2< or =1 depends only on the anisotropy of the system-environment interaction, being 0 for isotropic and 1 for XY interactions. This critical onset of a phase dominated by the quantum Zeno effect opens up new opportunities for controlling quantum dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...