Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cytokine ; 140: 155401, 2021 04.
Article in English | MEDLINE | ID: mdl-33508652

ABSTRACT

BACKGROUND AND OBJECTIVE: Sepsis is a potentially deadly organic dysfunction, and one of the main causes of mortality in intensive care units (ICU). Aerobic exercise (AE) is a preventive intervention in the establishment of inflammatory conditions, such as chronic lung diseases, but its effects on sepsis remain unclear. Therefore, this study aimed to evaluate the effects of AE on health condition, mortality, inflammation, and oxidative damage in an experimental model of pneumosepsis induced by Klebsiella pneumoniae (K.p). METHODS: Animals were randomly allocated to Control; Exercise (EXE); Pneumosepsis (PS) or Exercise + Pneumosepsis (EPS) groups. Exercised animals were submitted to treadmill exercise for 2 weeks, 30 min/day, prior to pneumosepsis induced by K.p tracheal instillation. RESULTS: PS produced a striking decrease in the health condition leading to massive death (85%). AE protected mice, as evidenced by better clinical scores and increased survival (70%). AE alleviated sickness behavior in EPS mice as evaluated in the open field test, and inflammation (nitrite + nitrate, TNF-α and IL-1ß levels) in broncoalveolar fluid. Catalase activity, oxidative damage to proteins and DNA was increased by sepsis and prevented by exercise. CONCLUSION: Overall, the beneficial effects of exercise in septic animals encompassed a markedly improved clinical score and decreased mortality, along with lower inflammation markers, less DNA and protein damage, as well as preserved antioxidant enzyme activity. Neural network risk analysis revealed exercise had a considerable effect on the overall health condition of septic mice.


Subject(s)
DNA Damage/physiology , DNA/metabolism , Physical Conditioning, Animal/physiology , Pneumonia/metabolism , Pneumonia/physiopathology , Sepsis/metabolism , Sepsis/physiopathology , Animals , Biomarkers/metabolism , Disease Models, Animal , Interleukin-1beta/metabolism , Lung/metabolism , Lung/physiopathology , Male , Mice , Oxidative Stress/physiology , Tumor Necrosis Factor-alpha/metabolism
2.
J Fish Dis ; 42(3): 455-463, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30659615

ABSTRACT

Perkinsus spp. have been detected in various bivalve species from north-east Brazil. Santa Catarina is a South Brasil state with the highest national oyster production. Considering the pathogenicity of some Perkinsus spp., a study was carried out to survey perkinsosis in two oyster species cultured in this State, the mangrove oyster Crassostrea gasar and the Pacific oyster Crassostrea gigas. Sampling involved eight sites along the state coast, and oyster sampling was collected during the period between January 2013 and December 2014. For the detection of Perkinsus, Ray's fluid thioglycollate medium (RFTM) and histology were used, and for the identification of the species, PCR and DNA sequencing were used. Perkinsus spp. was found by RFTM in C. gigas and C. gasar from São Francisco do Sul. This pathology was also detected in C. gasar from Balneário Barra do Sul both, by RFTM and histology. Perkinsus marinus was identified in C. gigas and C. gasar from São Francisco do Sul and Perkinsus beihaiensis in C. gasar from Balneário Barra do Sul. This is the first report of P. marinus in C. gigas from South America. Results of this preliminary study suggest that both oyster species tolerate the species of Perkinsus identified, without suffering heavy lesions.


Subject(s)
Alveolata/isolation & purification , Crassostrea/parasitology , Protozoan Infections, Animal/epidemiology , Alveolata/genetics , Animals , Aquaculture , Brazil/epidemiology , Polymerase Chain Reaction/methods , Protozoan Infections, Animal/parasitology , Sequence Analysis, DNA/methods
3.
Aquat Toxicol ; 173: 105-119, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26859778

ABSTRACT

The mercapturic acid pathway (MAP) is a major phase II detoxification route, comprising the conjugation of electrophilic substances to glutathione (GSH) in a reaction catalyzed by glutathione S-transferase (GST) enzymes. In mammals, GSH-conjugates are exported from cells, and the GSH-constituent amino acids (Glu/Gly) are subsequently removed by ectopeptidases. The resulting Cys-conjugates are reabsorbed and, finally, a mercapturic acid is generated through N-acetylation. This pathway, though very well characterized in mammals, is poorly studied in non-mammalian biological models, such as bivalve mollusks, which are key organisms in aquatic ecosystems, aquaculture activities and environmental studies. In the present work, the compound 1-chloro-2,4-dinitrobenzene (CDNB) was used as a model electrophile to study the MAP in Pacific oysters Crassostrea gigas. Animals were exposed to 10µM CDNB and MAP metabolites were followed over 24h in the seawater and in oyster tissues (gills, digestive gland and hemolymph). A rapid decay was detected for CDNB in the seawater (half-life 1.7h), and MAP metabolites peaked in oyster tissues as soon as 15min for the GSH-conjugate, 1h for the Cys-conjugate, and 4h for the final metabolite (mercapturic acid). Biokinetic modeling of the MAP supports the fast CDNB uptake and metabolism, and indicated that while gills are a key organ for absorption, initial biotransformation, and likely metabolite excretion, hemolymph is a possible milieu for metabolite transport along different tissues. CDNB-induced GSH depletion (4h) was followed by increased GST activity (24h) in the gills, but not in the digestive gland. Furthermore, the transcript levels of glutamate-cysteine ligase, coding for the rate limiting enzyme in GSH synthesis, and two phase II biotransformation genes (GSTpi and GSTo), presented a fast (4h) and robust (∼6-70 fold) increase in the gills. Waterborne exposure to electrophilic compounds affected gills, but not digestive gland, while intramuscular exposure was able to modulate biochemical parameters in both tissues. This study is the first evidence of a fully functional and interorgan MAP pathway in bivalves. Hemolymph was shown to be responsible for the metabolic interplay among tissues, and gills, acting as a powerful GSH-dependent metabolic barrier against waterborne electrophilic substances, possibly also participating in metabolite excretion into the sea water. Altogether, experimental and modeled data fully agree with the existence of a classical mechanism for phase II xenobiotic metabolism and excretion in bivalves.


Subject(s)
Acetylcysteine/metabolism , Crassostrea/metabolism , Dinitrochlorobenzene/metabolism , Animals , Gills/enzymology , Gills/metabolism , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Glutathione Transferase/metabolism , Half-Life , Models, Biological , Seawater/chemistry , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...