Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nature ; 626(7999): 626-634, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326614

ABSTRACT

Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.


Subject(s)
Evolution, Molecular , Immunotherapy, Adoptive , Lymphoma, T-Cell, Cutaneous , Mutation , T-Lymphocytes , Humans , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cytokines/biosynthesis , Cytokines/immunology , Cytokines/metabolism , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Immunotherapy, Adoptive/methods , Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Cutaneous/immunology , Lymphoma, T-Cell, Cutaneous/pathology , Lymphoma, T-Cell, Cutaneous/therapy , Phosphatidylinositol 3-Kinases , Signal Transduction/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation
2.
Nat Cancer ; 4(10): 1508-1525, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37723306

ABSTRACT

The PDCD1-encoded immune checkpoint receptor PD-1 is a key tumor suppressor in T cells that is recurrently inactivated in T cell non-Hodgkin lymphomas (T-NHLs). The highest frequencies of PDCD1 deletions are detected in advanced disease, predicting inferior prognosis. However, the tumor-suppressive mechanisms of PD-1 signaling remain unknown. Here, using tractable mouse models for T-NHL and primary patient samples, we demonstrate that PD-1 signaling suppresses T cell malignancy by restricting glycolytic energy and acetyl coenzyme A (CoA) production. In addition, PD-1 inactivation enforces ATP citrate lyase (ACLY) activity, which generates extramitochondrial acetyl-CoA for histone acetylation to enable hyperactivity of activating protein 1 (AP-1) transcription factors. Conversely, pharmacological ACLY inhibition impedes aberrant AP-1 signaling in PD-1-deficient T-NHLs and is toxic to these cancers. Our data uncover genotype-specific vulnerabilities in PDCD1-mutated T-NHL and identify PD-1 as regulator of AP-1 activity.


Subject(s)
Lymphoma, T-Cell, Peripheral , Lymphoma, T-Cell , Mice , Animals , Humans , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Lymphoma, T-Cell/genetics , Genes, Tumor Suppressor , Acetyl Coenzyme A/metabolism , Glycolysis/genetics
3.
J Invest Dermatol ; 142(12): 3253-3261.e4, 2022 12.
Article in English | MEDLINE | ID: mdl-35787399

ABSTRACT

Combined BET inhibitor/histone deacetylase inhibitor treatment induces marked apoptosis of cutaneous T-cell lymphoma (CTCL) with minimal normal T-cell toxicity. At 96 hours when apoptosis was extensive, a majority of CTCL lines showed ≥2-fold suppression of T-cell survival factors (e.g., AKT1, BCL2 antiapoptotic factors, BIRC5, CD40, CD70, GADD45A, PRKCA, TNFRSF1B, ΔNp73) and ≥2-fold upregulation of proapoptotic factors and tumor suppressors (e.g., ATM, BAK, BIM, multiple caspases, FHIT, HIC1, MGMT, NOD1) (P < 0.05). The largest alterations were in TP73 isoform expression, resulting in increased TAp73/ΔNp73 ratios in CTCL lines and leukemic Sézary cells. Targeted ΔNp73 inhibition by small interfering RNA knockdown resulted in robust CTCL apoptosis comparable with that induced by BET inhibitor/histone deacetylase inhibitor with minimal normal T-cell toxicity. Chromatin immunoprecipitation analysis showed that BET inhibitor/histone deacetylase inhibitor treatment reduced RNA polymerase II binding to ΔNp73, MYC, and AKT1 while increasing its binding to TAp73. CTCL skin lesions expressed both TAp73 and ΔNp73 isoforms in situ. In aggregate, these findings implicate TAp73/ΔNp73 balance as a major factor governing CTCL survival, show that the expression of p73 isoforms can be altered by molecular biological and pharmaceutical means, show that p73 isoforms are expressed across the entire CTCL clinical spectrum, and identify the p73 pathway as a potential target for therapeutics.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Humans , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Nuclear Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, T-Cell, Cutaneous/genetics , Apoptosis , Protein Isoforms/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics
6.
Blood ; 138(14): 1225-1236, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34115827

ABSTRACT

Cutaneous T-cell lymphomas (CTCLs) are a clinically heterogeneous collection of lymphomas of the skin-homing T cell. To identify molecular drivers of disease phenotypes, we assembled representative samples of CTCLs from patients with diverse disease subtypes and stages. Via DNA/RNA-sequencing, immunophenotyping, and ex vivo functional assays, we identified the landscape of putative driver genes, elucidated genetic relationships between CTCLs across disease stages, and inferred molecular subtypes in patients with stage-matched leukemic disease. Collectively, our analysis identified 86 putative driver genes, including 19 genes not previously implicated in this disease. Two mutations have never been described in any cancer. Functionally, multiple mutations augment T-cell receptor-dependent proliferation, highlighting the importance of this pathway in lymphomagenesis. To identify putative genetic causes of disease heterogeneity, we examined the distribution of driver genes across clinical cohorts. There are broad similarities across disease stages. Many driver genes are shared by mycosis fungoides (MF) and Sezary syndrome (SS). However, there are significantly more structural variants in leukemic disease, leading to highly recurrent deletions of putative tumor suppressors that are uncommon in early-stage skin-centered MF. For example, TP53 is deleted in 7% and 87% of MF and SS, respectively. In both human and mouse samples, PD1 mutations drive aggressive behavior. PD1 wild-type lymphomas show features of T-cell exhaustion. PD1 deletions are sufficient to reverse the exhaustion phenotype, promote a FOXM1-driven transcriptional signature, and predict significantly worse survival. Collectively, our findings clarify CTCL genetics and provide novel insights into pathways that drive diverse disease phenotypes.


Subject(s)
Lymphoma, T-Cell, Cutaneous/genetics , Transcriptome , Animals , Cells, Cultured , Forkhead Box Protein M1/genetics , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Mice , Mutation , Oncogenes , Tumor Suppressor Protein p53/genetics
7.
Nat Commun ; 11(1): 1806, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286303

ABSTRACT

Primary cutaneous γδ T cell lymphomas (PCGDTLs) represent a heterogeneous group of uncommon but aggressive cancers. Herein, we perform genome-wide DNA, RNA, and T cell receptor (TCR) sequencing on 29 cutaneous γδ lymphomas. We find that PCGDTLs are not uniformly derived from Vδ2 cells. Instead, the cell-of-origin depends on the tissue compartment from which the lymphomas are derived. Lymphomas arising from the outer layer of skin are derived from Vδ1 cells, the predominant γδ cell in the epidermis and dermis. In contrast, panniculitic lymphomas arise from Vδ2 cells, the predominant γδ T cell in the fat. We also show that TCR chain usage is non-random, suggesting common antigens for Vδ1 and Vδ2 lymphomas respectively. In addition, Vδ1 and Vδ2 PCGDTLs harbor similar genomic landscapes with potentially targetable oncogenic mutations in the JAK/STAT, MAPK, MYC, and chromatin modification pathways. Collectively, these findings suggest a paradigm for classifying, staging, and treating these diseases.


Subject(s)
Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Cutaneous/pathology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Amino Acid Sequence , Antigens, CD1d/metabolism , Chromatin Assembly and Disassembly , Epitopes/immunology , Genome, Human , HEK293 Cells , Humans , Lymph Nodes/pathology , Models, Biological , Mutation/genetics , Phenotype , Principal Component Analysis , Signal Transduction , Skin/pathology , Transcription, Genetic , Transcriptome/genetics
8.
J Vitreoretin Dis ; 4(4): 332-336, 2020.
Article in English | MEDLINE | ID: mdl-37009184

ABSTRACT

Purpose: To describe a case with an unusual presentation of Propionibacterium acnes (P acnes) with ultimately a good visual outcome. Methods: A case report with review of approaches to P acnes endophthalmitis. Results: We describe a patient with an unusual presentation of P acnes of panuveitis with white, circular preretinal lesions without intracapsular deposits. Diagnosis was made from cultures from pars plana vitrectomy. Eventually, she was definitively managed with capsulectomy, repositioning of her intraocular lens via sutureless intrascleral fixation, and intravitreal vancomycin injection. Conclusion: This is a report of P acnes endophthalmitis presenting with discrete preretinal lesions where surgical and medical management lead to a complete resolution of uveitis and symptoms after a 3-year follow up where the patient's final visual acuity was Snellen 20/20 OU.

9.
Blood ; 130(12): 1430-1440, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28694326

ABSTRACT

Cutaneous T-cell lymphoma (CTCL) is an incurable non-Hodgkin lymphoma of the skin-homing T cell. In early-stage disease, lesions are limited to the skin, but in later-stage disease, the tumor cells can escape into the blood, the lymph nodes, and at times the visceral organs. To clarify the genomic basis of CTCL, we performed genomic analysis of 220 CTCLs. Our analyses identify 55 putative driver genes, including 17 genes not previously implicated in CTCL. These novel mutations are predicted to affect chromatin (BCOR, KDM6A, SMARCB1, TRRAP), immune surveillance (CD58, RFXAP), MAPK signaling (MAP2K1, NF1), NF-κB signaling (PRKCB, CSNK1A1), PI-3-kinase signaling (PIK3R1, VAV1), RHOA/cytoskeleton remodeling (ARHGEF3), RNA splicing (U2AF1), T-cell receptor signaling (PTPRN2, RLTPR), and T-cell differentiation (RARA). Our analyses identify recurrent mutations in 4 genes not previously identified in cancer. These include CK1α (encoded by CSNK1A1) (p.S27F; p.S27C), PTPRN2 (p.G526E), RARA (p.G303S), and RLTPR (p.Q575E). Last, we functionally validate CSNK1A1 and RLTPR as putative oncogenes. RLTPR encodes a recently described scaffolding protein in the T-cell receptor signaling pathway. We show that RLTPR (p.Q575E) increases binding of RLTPR to downstream components of the NF-κB signaling pathway, selectively upregulates the NF-κB pathway in activated T cells, and ultimately augments T-cell-receptor-dependent production of interleukin 2 by 34-fold. Collectively, our analysis provides novel insights into CTCL pathogenesis and elucidates the landscape of potentially targetable gene mutations.


Subject(s)
Genomics , Lymphoma, T-Cell, Cutaneous/genetics , Microfilament Proteins/genetics , Amino Acid Sequence , Amino Acid Substitution/genetics , Base Sequence , Genome, Human , HEK293 Cells , Humans , Jurkat Cells , Microfilament Proteins/chemistry , Mutation/genetics , NF-kappa B/metabolism , Oncogenes , Receptors, Antigen, T-Cell/metabolism , Sequence Analysis, DNA , Signal Transduction/genetics , rhoA GTP-Binding Protein/genetics
10.
Science ; 356(6337): 534-539, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28473588

ABSTRACT

Free-living animals must not only regulate the amount of food they consume but also choose which types of food to ingest. The shifting of food preference driven by nutrient-specific hunger can be essential for survival, yet little is known about the underlying mechanisms. We identified a dopamine circuit that encodes protein-specific hunger in Drosophila The activity of these neurons increased after substantial protein deprivation. Activation of this circuit simultaneously promoted protein intake and restricted sugar consumption, via signaling to distinct downstream neurons. Protein starvation triggered branch-specific plastic changes in these dopaminergic neurons, thus enabling sustained protein consumption. These studies reveal a crucial circuit mechanism by which animals adjust their dietary strategy to maintain protein homeostasis.


Subject(s)
Dietary Proteins/metabolism , Dopaminergic Neurons/physiology , Drosophila melanogaster/physiology , Hunger/physiology , Neuronal Plasticity , Proteostasis/physiology , Animals , Nerve Net/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...