Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroendocrinol ; 34(12): e13212, 2022 12.
Article in English | MEDLINE | ID: mdl-36426781

ABSTRACT

The ventromedial prefrontal cortex (vmPFC) regulates fear acquisition, fear extinction, mood, and HPA axis function. Multiple brain regions exhibit time-of-day dependent variations in learning, long term potentiation (LTP), and dendritic morphology. Glucocorticoids have been implicated in the regulation of dendritic structure in the context of stress. Glucocorticoids are also known to regulate molecular clock entrainment via upregulation of Per1 transcription. In the present study, C57BL/6 N mice were sacrificed at three distinct times of day (ZT3, ZT12, and ZT16, lights off at ZT12) and Per1 mRNA expression was measured in the infralimbic and prelimbic vmPFC subregions using droplet digital (dd) PCR after recovering from adrenalectomy or sham surgery for 10 days. Sham mice showed Per1 rhythmicity in both infralimbic (IL) and prelimbic (PL) cortex, with peak expression occurring at ZT12. Adrenalectomized mice showed reductions in Per1 amplitude at ZT12 in both IL and PL, suggesting that the vmPFC molecular clock is entrained by diurnal glucocorticoid oscillations. Thy1-eGFP mice were used to visualize and quantify dendritic spine density on deep layer pyramidal dendrites at ZT 3, 12, and 16. Spine density in both PL and IL exhibited changes between the light (inactive) and dark (active) phases, with peak spine density observed at ZT16 and trough spine density observed at ZT3. These changes in spine density were restricted to changes in long thin and stubby type spines. To determine if changes in spine density is regulated by glucocorticoid oscillations, the 11ß-hydroxylase inhibitor metyrapone was administered 2 h prior to the onset of the active phase (ZT10) daily for 7 days. Metyrapone administration blocked both the diurnal peak of plasma corticosterone and peak spine densities in the IL and PL at ZT16. These results suggest that vmPFC molecular clock gene and dendritic spine diurnal rhythms depend on intact diurnal glucocorticoid oscillations.


Subject(s)
Extinction, Psychological , Glucocorticoids , Animals , Mice , Circadian Rhythm/physiology , Extinction, Psychological/physiology , Fear/physiology , Glucocorticoids/metabolism , Hypothalamo-Hypophyseal System/metabolism , Metyrapone/pharmacology , Mice, Inbred C57BL , Pituitary-Adrenal System/metabolism , Prefrontal Cortex/metabolism
2.
Stress ; 23(4): 457-465, 2020 07.
Article in English | MEDLINE | ID: mdl-32093522

ABSTRACT

The chronic variable stress (CVS) paradigm is frequently used to model the changes in hypothalamic pituitary adrenal (HPA) axis function characteristic of many stress-related diseases. However, male C57BL/6 mice are typically resistant to CVS's effects, making it difficult to determine how chronic stress exposure may alter acute HPA function and regulation in these mice. As social support in rodents can profoundly influence physiological and behavioral processes, including the HPA axis, we sought to characterize the effects of CVS exposure on basal and acute stress-induced HPA axis function in pair- and single-housed adult male mice. Despite all subjects exhibiting decreased body weight gain after six weeks of CVS, the corticosterone response to a novel, acute restraint stressor was enhanced by CVS exclusively in single-housed males. CVS also significantly increased arginine vasopressin (AVP) mRNA in the hypothalamic paraventricular nucleus (PVN) in single-housed males only. Moreover, in single-, but not pair-housed mice, CVS attenuated decreases in circulating OT found following acute restraint. Only the effect of CVS to elevate PVN corticotropin releasing hormone (CRH) mRNA levels after an acute stressor was restricted to pair-housed mice. Collectively, our findings suggest that social isolation reveals effects of CVS on the HPA axis in male C57BL/6 mice.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Animals , Corticosterone , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Male , Mice , Mice, Inbred C57BL , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System/metabolism , Social Isolation , Stress, Psychological
3.
Physiol Behav ; 209: 112613, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31299374

ABSTRACT

Chronic stress is often associated with a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which can greatly increase risk for a number of stress-related diseases, including neuropsychiatric disorders. Despite a striking sex-bias in the prevalence of many of these disorders, few preclinical studies have examined female subjects. Hence, the present study aimed to explore the effects of chronic stress on the basal and acute stress-induced activity of the HPA axis in the female C57BL/6 mouse. We used a chronic variable stress (CVS) paradigm in these studies, which successfully induces physiological and behavioral changes that are similar to those reported for some patients with mood disorders. Using this model, we found pronounced, time-dependent effects of chronic stress on the HPA axis. CVS-treated females exhibited adrenal hypertrophy, yet their pattern of glucocorticoid secretion in the morning resembled that of controls. CVS-treated and control females had similar morning basal corticosterone (CORT) levels, which were both significantly elevated following a restraint stressor. Although morning basal gene expression of the key HPA-controlling neuropeptides corticotropin releasing hormone (CRH), arginine vasopressin (AVP) and oxytocin (OT) was unaltered within the paraventricular nucleus (PVN) by CVS, CVS altered the PVN OT and AVP mRNA responses to acute restraint. In control females, acute stress decreased AVP, but not OT mRNA; whereas, in CVS females, it decreased OT, but not, AVP mRNA. Unlike the morning pattern of HPA activity, in the evening, CVS-treated females showed increased basal CORT with hypoactive responses of CORT and PVN c-Fos immunoreactivity to restraint stress. Furthermore, CVS elevated evening PVN CRH and OT mRNAs in the PVN, but it did not influence anxiety- or depressive-like behavior after a light/dark box or tail suspension test. Taken together, these findings indicate that CVS is an effective model for HPA axis dysregulation in the female mouse and may be relevant for stress-related diseases.


Subject(s)
Hypothalamo-Hypophyseal System/physiopathology , Pituitary-Adrenal System/physiopathology , Stress, Psychological/physiopathology , Animals , Anxiety/psychology , Arginine Vasopressin/metabolism , Chronic Disease , Corticotropin-Releasing Hormone/metabolism , Depression/psychology , Female , Gene Expression Regulation , Glucocorticoids/metabolism , Mice , Mice, Inbred C57BL , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Restraint, Physical
SELECTION OF CITATIONS
SEARCH DETAIL
...