Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Diabet Med ; 40(12): e15227, 2023 12.
Article in English | MEDLINE | ID: mdl-37728506

ABSTRACT

AIMS: Human islet transplantation as a therapy for type 1 diabetes is compromised by the loss of functional beta cells in the immediate post-transplantation period. Mesenchymal stromal cells (MSCs) and MSC-derived secretory peptides improve the outcomes of islet transplantation in rodent models of diabetes. Here, we utilized a mouse model for human islet transplantation and assessed the effects of a cocktail of MSC-secreted peptides (screened by MSC-secretome for human islet GPCRs) on the functional survival of human islets. METHODS: Human islets from nine donors (Age: 36-57; BMI: 20-35) were treated with a cocktail of human recombinant annexin A1 (ANXA1), stromal cell-derived factor-1 (SDF-1/CXCL12) and complement component C3 (C3a). Glucose-stimulated insulin secretion (GSIS) was assessed in static incubation, and cytokine-induced apoptosis was assessed by measuring caspase 3/7 activity. mRNA expression levels were determined by qPCR. Human islet function in vivo was assessed using a novel model for human islet transplantation into a T1D mouse model. Human islet function in vivo was assessed using islet transplantation under the kidney capsule of immunodeficient mice prior to STZ destruction of endogenous mouse beta cells to model T1DM. RESULTS: Pretreatment with a cocktail of MSC-secreted peptides increased GSIS in vitro and protected against cytokine-induced apoptosis in human islets isolated from nine donors. Animals transplanted with either treated or untreated human islets remained normoglycaemic for up to 28 days after STZ-administration to ablate the endogenous mouse beta cells, whereas non-transplanted animals showed significantly increased blood glucose immediately after STZ administration. Removal of the human islet graft by nephrectomy resulted in rapid increases in blood glucose to similar levels as the non-transplanted controls. Pretreating human islets with the MSC-derived cocktail significantly improved glucose tolerance in graft recipients, consistent with enhanced functional survival of the treated islets in vivo. CONCLUSION: Pretreating human islets before transplantation with a defined cocktail of MSC-derived molecules could be employed to improve the quality of human islets for transplantation therapy for type 1 diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Mesenchymal Stem Cells , Humans , Mice , Animals , Adult , Middle Aged , Islets of Langerhans/metabolism , Insulin/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Experimental/therapy , Islets of Langerhans Transplantation/methods , Mesenchymal Stem Cells/metabolism , Glucose/pharmacology , Glucose/metabolism , Cytokines/metabolism , Disease Models, Animal
2.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066428

ABSTRACT

Candida albicans is a fungal pathobiont colonising mucosal surfaces of the human body, including the oral cavity. Under certain predisposing conditions, C. albicans invades mucosal tissues activating EGFR-MAPK signalling pathways in epithelial cells via the action of its peptide toxin candidalysin. However, our knowledge of the epithelial mechanisms involved during C. albicans colonisation is rudimentary. Here, we describe the role of the transcription factor early growth response protein 1 (EGR1) in human oral epithelial cells (OECs) in response to C. albicans. EGR1 expression increases in OECs when exposed to C. albicans independently of fungal viability, morphology, or candidalysin release, suggesting EGR1 is involved in the fundamental recognition of C. albicans, rather than in response to invasion or 'pathogenesis'. Upregulation of EGR1 is mediated by EGFR via Raf1, ERK1/2 and NF-κB signalling but not PI3K/mTOR signalling. Notably, EGR1 mRNA silencing impacts on anti-C. albicans immunity, reducing GM-CSF, IL-1α and IL-1ß release, and increasing IL-6 and IL-8 production. These findings identify an important role for EGR1 in priming epithelial cells to respond to subsequent invasive infection by C. albicans and elucidate the regulation circuit of this transcription factor after contact.

3.
Diabet Med ; 39(12): e14962, 2022 12.
Article in English | MEDLINE | ID: mdl-36151994

ABSTRACT

AIMS: Beta cell endoplasmic reticulum (ER) stress can cause cellular death and dysfunction and has been implicated in the pathogenesis of diabetes. Animal models of beta cell ER stress are critical in further understanding this and for testing novel diabetes therapeutics. The KINGS mouse is a model of beta cell ER stress driven by a heterozygous mutation in Ins2. In this study, we investigated how beta cell ER stress in the KINGS mouse drives diabetes. METHODS: We investigated whether the unfolded protein response (UPR) was activated in islets isolated from male and female KINGS mice and whether this impacted beta cell mass and turnover. RESULTS: Whilst the UPR was up-regulated in KINGS islets, with increased protein expression of markers of all three UPR arms, this was not associated with a mass loss of beta cells; beta cell apoptosis rates did not increase until after the development of overt diabetes, and did not lead to substantial changes in beta cell mass. CONCLUSION: We propose that the KINGS mouse represents a model where beta cell maladaptive UPR signalling drives diabetes development without causing mass beta cell loss.


Subject(s)
Diabetes Mellitus , Insulin-Secreting Cells , Female , Male , Mice , Humans , Animals , Endoplasmic Reticulum Stress/physiology , Insulin-Secreting Cells/metabolism , Unfolded Protein Response , Diabetes Mellitus/metabolism , Apoptosis
4.
Diabet Med ; 38(12): e14705, 2021 12.
Article in English | MEDLINE | ID: mdl-34596274

ABSTRACT

Mice are used extensively in preclinical diabetes research to model various aspects of blood glucose homeostasis. Careful experimental design is vital for maximising welfare and improving reproducibility of data. Alongside decisions regarding physiological characteristics of the animal cohort (e.g., sex, strain and age), experimental protocols must also be carefully considered. This includes choosing relevant end points of interest and understanding what information they can provide and what their limitations are. Details of experimental protocols must, therefore, be carefully planned during the experimental design stage, especially considering the impact of researcher interventions on preclinical end points. Indeed, in line with the 3Rs of animal research, experiments should be refined where possible to maximise welfare. The role of welfare may be particularly pertinent in preclinical diabetes research as blood glucose concentrations are directly altered by physiological stress responses. Despite the potential impact of variations in experimental protocols, there is distinct lack of standardisation and consistency throughout the literature with regards to several experimental procedures including fasting, cage changing and glucose tolerance test protocol. This review firstly highlights practical considerations with regard to the choice of end points in preclinical diabetes research and the potential for novel technologies such as continuous glucose monitoring and glucose clamping techniques to improve data resolution. The potential influence of differing experimental protocols and in vivo procedures on both welfare and experimental outcomes is then discussed with focus on standardisation, consistency and full disclosure of methods.


Subject(s)
Biomedical Research/methods , Blood Glucose Self-Monitoring/methods , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/diagnosis , Diabetes Mellitus/diagnosis , Animals , Diabetes Mellitus/blood , Diabetes Mellitus, Experimental/blood , Glucose Tolerance Test , Mice
5.
Diabet Med ; 38(12): e14711, 2021 12.
Article in English | MEDLINE | ID: mdl-34614258

ABSTRACT

Diabetes mellitus is characterised by hyperglycaemia, which results from an absolute or relative lack of insulin. Chronic and acute hyperglycaemia are associated with a range of health complications and an overall increased risk of mortality. Mouse models are vital in understanding the pathogenesis of this disease and its complications, as well as for developing new diabetes therapeutics. However, for experimental questions to be suitably tested, it is critical that factors inherent to the animal model are considered, as these can have profound impacts on experimental outcome, data reproducibility and robustness. In this review, we discuss key considerations relating to model choice, physiological characteristics (such as age, sex and genetic background) and husbandry practices and explore the impact of these on common experimental readouts used in preclinical diabetes research.


Subject(s)
Biomedical Research/methods , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 2/therapy , Disease Management , Insulin Resistance/physiology , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 2/genetics , Mice
6.
Diabetes ; 69(12): 2667-2677, 2020 12.
Article in English | MEDLINE | ID: mdl-32994272

ABSTRACT

Animal models are important tools in diabetes research because ethical and logistical constraints limit access to human tissue. ß-Cell dysfunction is a common contributor to the pathogenesis of most types of diabetes. Spontaneous hyperglycemia was developed in a colony of C57BL/6J mice at King's College London (KCL). Sequencing identified a mutation in the Ins2 gene, causing a glycine-to-serine substitution at position 32 on the B chain of the preproinsulin 2 molecule. Mice with the Ins2 +/G32S mutation were named KCL Ins2 G32S (KINGS) mice. The same mutation in humans (rs80356664) causes dominantly inherited neonatal diabetes. Mice were characterized, and ß-cell function was investigated. Male mice became overtly diabetic at ∼5 weeks of age, whereas female mice had only slightly elevated nonfasting glycemia. Islets showed decreased insulin content and impaired glucose-induced insulin secretion, which was more severe in males. Transmission electron microscopy and studies of gene and protein expression showed ß-cell endoplasmic reticulum (ER) stress in both sexes. Despite this, ß-cell numbers were only slightly reduced in older animals. In conclusion, the KINGS mouse is a novel model of a human form of diabetes that may be useful to study ß-cell responses to ER stress.


Subject(s)
Diabetes Mellitus/genetics , Disease Models, Animal , Endoplasmic Reticulum Stress/physiology , Insulin-Secreting Cells/metabolism , Animals , Ecosystem , Female , Glucose Tolerance Test , Humans , Insulin/blood , Male , Mice , Mice, Inbred Strains , Mutation , Polymorphism, Single Nucleotide
7.
Methods Mol Biol ; 2128: 1-10, 2020.
Article in English | MEDLINE | ID: mdl-32180182

ABSTRACT

Mouse models of diabetes are important tools used in preclinical diabetes research. However, when working with these models, it is important to consider factors that could influence experimental outcome. This is particularly important given the wide variety of models available, each with specific characteristics that could be influenced by extrinsic or intrinsic factors. Blood glucose concentrations, a commonly used and valid endpoint in these models, are particularly susceptible to manipulation by these factors. These include potential effects of intrinsic factors such as strain, sex, and age and extrinsic factors such as husbandry practices and experimental protocols. These variables should therefore be taken into consideration when the model is chosen and the experiments are designed. This chapter outlines common variables that can impact the phenotype of a model, as well as describes the methods used for assessing onset of diabetes and monitoring diabetic mice.


Subject(s)
Animal Husbandry/methods , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/urine , Age Factors , Age of Onset , Animals , Blood Glucose/analysis , Diabetes Mellitus, Experimental/diagnosis , Diabetes Mellitus, Experimental/drug therapy , Diagnostic Techniques and Procedures , Female , Glycosuria , Insulin/administration & dosage , Male , Mice , Mice, Mutant Strains , Phenotype , Sex Factors , Time Factors , Urinalysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...