Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Drug Target ; 31(1): 109-118, 2023 01.
Article in English | MEDLINE | ID: mdl-35938912

ABSTRACT

Peri-stent restenosis following stent implantation is a major clinical problem. We have previously demonstrated that ultrasound-facilitated liposomal delivery of pioglitazone (PGN) to the arterial wall attenuated in-stent restenosis. To evaluate ultrasound mediated arterial delivery, in Yucatan miniswine, balloon inflations were performed in the carotid and subclavian arteries to simulate stent implantation and induce fibrin formation. The fibrin-binding peptide, GPRPPGGGC, was conjugated to echogenic liposomes (ELIP) containing dinitrophenyl-L-alanine-labelled pioglitazone (DNP-PGN) for targeting purposes. After pre-treating the arteries with nitroglycerine, fibrin-binding peptide-conjugated PGN-loaded ELIP (PAFb-DNP-PGN-ELIP also termed atheroglitatide) were delivered to the injured arteries via an endovascular catheter with an ultrasound core, either with or without ultrasound application (EKOSTM Endovascular System, Boston Scientific). In arteries treated with atheroglitatide, there was substantial delivery of PGN into the superficial layers (5 µm from the lumen) of the arteries with and without ultrasound, [(1951.17 relative fluorescence units (RFU) vs. 1901.17 RFU; P-value = 0.939)]. With ultrasound activation there was increased penetration of PGN into the deeper arterial layers (up to 35 µm from the lumen) [(13195.25 RFU vs. 7681.00 RFU; P-value = 0.005)]. These pre-clinical data demonstrate ultrasound mediated therapeutic vascular delivery to deeper layers of the injured arterial wall. This model has the potential to reduce peri- stent restenosis.


Subject(s)
Arteries , Liposomes , Pioglitazone , Ultrasonography , Stents
2.
Stem Cells ; 37(12): 1615-1628, 2019 12.
Article in English | MEDLINE | ID: mdl-31574188

ABSTRACT

Although the lack of dystrophin expression in muscle myofibers is the central cause of Duchenne muscular dystrophy (DMD), accumulating evidence suggests that DMD may also be a stem cell disease. Recent studies have revealed dystrophin expression in satellite cells and demonstrated that dystrophin deficiency is directly related to abnormalities in satellite cell polarity, asymmetric division, and epigenetic regulation, thus contributing to the manifestation of the DMD phenotype. Although metabolic and mitochondrial dysfunctions have also been associated with the DMD pathophysiology profile, interestingly, the role of dystrophin with respect to stem cells dysfunction has not been elucidated. In the past few years, editing of the gene that encodes dystrophin has emerged as a promising therapeutic approach for DMD, although the effects of dystrophin restoration in stem cells have not been addressed. Herein, we describe our use of a clustered regularly interspaced short palindromic repeats/Cas9-based system to correct the dystrophin mutation in dystrophic (mdx) muscle progenitor cells (MPCs) and show that the expression of dystrophin significantly improved cellular properties of the mdx MPCs in vitro. Our findings reveal that dystrophin-restored mdx MPCs demonstrated improvements in cell proliferation, differentiation, bioenergetics, and resistance to oxidative and endoplasmic reticulum stress. Furthermore, our in vivo studies demonstrated improved transplantation efficiency of the corrected MPCs in the muscles of mdx mice. Our results indicate that changes in cellular energetics and stress resistance via dystrophin restoration enhance muscle progenitor cell function, further validating that dystrophin plays a role in stem cell function and demonstrating the potential for new therapeutic approaches for DMD. Stem Cells 2019;37:1615-1628.


Subject(s)
Dystrophin/genetics , Genetic Therapy/methods , Muscle Fibers, Skeletal/pathology , Muscular Dystrophy, Duchenne/therapy , Satellite Cells, Skeletal Muscle/pathology , Animals , CRISPR-Cas Systems/genetics , Cell Differentiation/genetics , Cell Polarity/physiology , Cell Proliferation/genetics , Disease Models, Animal , Dystrophin/metabolism , Endoplasmic Reticulum Stress/genetics , Energy Metabolism/genetics , Epigenesis, Genetic , Gene Editing , Mice , Mice, Inbred mdx , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Oxidative Stress/genetics , Stem Cells/physiology
3.
Immune Netw ; 19(6): e41, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31921471

ABSTRACT

We previously demonstrated that atherogenic Ldlr -/- Apobec1 -/- (LDb) double knockout mice lacking both low-density lipoprotein receptor (LDLR) and apolipoprotein B mRNA-editing catalytic polypeptide-1 (Apobec1) had increased serum IL-17 levels, with T cell programming shifted towards Th17 cells. In this study, we assessed the role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in T cell programming and atherogenesis. We deleted the Pcsk9 gene from LDb mice to generate Ldlr -/- Apobec1 -/- Pcsk9 -/- (LTp) triple knockout mice. Atherosclerosis in the aortic sinus and aorta were quantitated. Lymphoid cells were analyzed by flow cytometry, ELISA and real-time PCR. Despite of dyslipidemia, LTp mice developed barely detectable atherosclerotic lesions. The IL-17, was very low in plasma and barely detectable in the aortic sinus in the LTp mice. In the spleen, the number of CD4+CD8- cells and splenocytes were much lower in the LDb mice than LTp mice, whereas, the IL-17-producing cells of γδTCR+ T cells and effector memory CD4+ T cells (CD44hiCD4+) in the spleen were significantly higher in the LDb mice than in the LTp mice. The Rorc mRNA expression levels were elevated in LDb mice compared to LTp mice. When re-stimulated with an anti-CD3 Ab, CD44hiCD4+ T cells from LDb mice secreted more IL-17 than those from LTp mice. T cells from LDb mice (with PCSK9) produce more IL-17 at basal and stimulated conditions when compared with LTp mice (without PCSK9). Despite the dyslipidemic profile and the lack of LDLR, atherogenesis is markedly reduced in LTp mice. These results suggest that PCSK9 is associated with changes in T cell programming that contributes to the development of atherosclerosis.

4.
Nanomedicine ; 14(6): 1941-1947, 2018 08.
Article in English | MEDLINE | ID: mdl-29933021

ABSTRACT

Management of patients suffering from myocardial infarction (MI) is based on the extent of coronary artery disease and myocardial scar burden. We have developed a potentially clinically-useful X-ray molecular imaging contrast agent based on gold nanoparticle (AuNPs) functionalized with collagen-binding adhesion protein 35 (CNA35) with the capabilities of achieving prolonged blood pool enhancement for vascular imaging of the coronary arteries and specific targeting of collagen within myocardial scar. At a concentration of ~ 45 mg Au/ml, AuNPs maintained a stable blood pool enhancement at 142-160 HU within an hour of intravenous administration. At 6 hours, specific signal enhancement was detected in the myocardium scar in rats injected with CNA35-AuNPs, but not with control AuNPs or in control animals. In conclusion, CNA35-AuNPs may be considered as a CT contrast agent for both vascular imaging of coronary artery disease and molecular imaging of myocardial scar in the heart.


Subject(s)
Cell Adhesion Molecules/metabolism , Cicatrix/pathology , Gold/chemistry , Metal Nanoparticles/administration & dosage , Myocardial Infarction/pathology , Myocardium/pathology , Tomography, X-Ray Computed/methods , Animals , Cell Adhesion , Cell Adhesion Molecules/chemistry , Cicatrix/diagnostic imaging , Female , Image Processing, Computer-Assisted , Metal Nanoparticles/chemistry , Myocardial Infarction/diagnostic imaging , Rats
5.
Mol Imaging Biol ; 17(3): 328-36, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25301703

ABSTRACT

PURPOSE: Macrophage plays an important role in plaque destabilization in atherosclerosis. By harnessing the affinity of macrophages to certain phospholipid species, a liposomal contrast agent containing phosphatidylserine (PS) and X-ray computed tomographic (CT) contrast agent was prepared and evaluated for CT imaging of plaque-associated macrophages in rabbit models of atherosclerosis. PROCEDURES: Liposomes containing PS and iodixanol were evaluated for their physicochemical characteristics, in vitro macrophage uptake, in vivo blood pool clearance, and organ distribution. Plaque enhancement in the aorta was imaged with CT in two atherosclerotic rabbit models. RESULTS: In vitro macrophage uptake of PS liposomes increased with increasing amount of PS in the liposomes. Overall clearance of PS liposomes was more rapid than control liposomes. Smaller PS liposomes (d = 112 ± 4 nm) were more effective than control liposomes of similar size or larger control and PS liposomes (d = 172 ± 17 nm) in enhancing aortic plaques in both rabbit models. CONCLUSIONS: Proper liposomal surface modification and appropriate sizing are important determinant for CT-based molecular imaging of macrophages in atheroma.


Subject(s)
Contrast Media/chemistry , Liposomes/chemistry , Macrophages/metabolism , Phosphatidylserines/chemistry , Plaque, Atherosclerotic/diagnostic imaging , Animals , Aorta/pathology , Apoptosis , Disease Models, Animal , Inflammation , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/pathology , Rabbits , Radionuclide Imaging , Tomography, X-Ray Computed , Triiodobenzoic Acids/chemistry
6.
Nanomedicine ; 10(3): 619-27, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24096032

ABSTRACT

Although there have been substantial advancements in the treatment of inflammatory arthritis, treatments for osteoarthritis (OA) have lagged and currently are primarily palliative until joints become totally dysfunctional and prosthetic replacement is needed. One obstacle for developing a preventive therapy for OA is the lack of good tools for efficiently diagnosing the disease and monitoring its progression during the early stages when the effect of therapeutic drugs or biologics is most likely to be effective. We have developed near infrared immunoliposomes conjugated with type II collagen antibody for diagnosis and treatment of early OA. These immunoliposomes bind to damaged but not normal cartilage. Utilizing these reagents, we can quantitate exposure of type II collagen during cartilage degradation in individual joints in vivo in a guinea pig. Immunoliposomes could be used to determine the effectiveness of therapeutic interventions in small animals as well as vehicles for localized drug delivery to OA chondrocytes. FROM THE CLINICAL EDITOR: This team of authors have developed near infrared immunoliposomes conjugated with type II collagen antibody for diagnosis and treatment of early OA, with promising results demonstrated in a guinea pig model.


Subject(s)
Immunoconjugates/therapeutic use , Liposomes/therapeutic use , Osteoarthritis/diagnosis , Osteoarthritis/therapy , Animals , Cartilage/immunology , Cartilage/pathology , Collagen Type II/analysis , Collagen Type II/immunology , Guinea Pigs , Immunoconjugates/immunology , Liposomes/immunology , Liposomes/ultrastructure , Osteoarthritis/immunology
7.
Nanomedicine ; 9(7): 1067-76, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23563046

ABSTRACT

In the setting of myocardial ischemia, recovery of myocardial function by revascularization procedures depends on the extent of coronary disease and myocardial scar burden. Currently, computed tomographic (CT) imaging offers superior evaluation of coronary lesions but lacks the capability to measure the transmural extent of myocardial scar. Our work focuses on determining if collagen-targeting gold nanoparticles (AuNPs) can effectively target myocardial scar and provide adequate contrast for CT imaging. AuNPs were coated with a collagen-homing peptide, collagen adhesin (CNA35). Myocardial scar was created in mice by occlusion/reperfusion of the left anterior descending coronary artery. Thirty days later, un-gated CT imaging was performed. Over 6h, CNA35-AuNPs provided uniform and prolonged opacification of the vascular structures (100-130 HU). In mice with larger scar burden, focal contrast enhancement was detected in the myocardium, which was not apparent within that of control mice. Histological staining confirmed myocardial scar formation and accumulation of AuNPs. FROM THE CLINICAL EDITOR: This team of investigators presents a collagen-targeting gold nanoparticle-based approach that enables the imaging of myocardial scars via CT scans in a rodent model. This information would enable clinicians to judge the recovery potential of myocardium more accurately than the current CT-scan based approaches.


Subject(s)
Cicatrix/diagnostic imaging , Collagen , Gold , Metal Nanoparticles , Myocardium/pathology , Tomography, X-Ray Computed , Animals , Cicatrix/pathology , Collagen/metabolism , Collagen/pharmacokinetics , Female , Gold/metabolism , Gold/pharmacokinetics , Light , Mice , Mice, Inbred C57BL , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Polyethylene Glycols/chemistry , Protein Binding , Scattering, Radiation , Tissue Distribution
8.
J Pharm (Cairo) ; 2013: 390425, 2013.
Article in English | MEDLINE | ID: mdl-26491606

ABSTRACT

Buckysomes, liposome-like vesicles comprised of dendritic C60 subunits that self-assemble into unilamellar vesicles, are unique nanovectors that have utility in drug delivery. We have prepared paclitaxel-embedded buckysomes (PEBs) and examined biodistriubition profiles with commercially available formulations of the drug. As compared to Abraxane, an albumin-bound formulation of paclitaxel, PEBs showed higher tissue accumulation in the liver and the kidney at 45 and 60 minutes and in the lungs at 30 minutes, making them suitable drug-delivery carriers for short-term therapy to the mentioned organs. These buckysomes can be further functionalized to specifically deliver paclitaxel to the tumor site.

9.
J Pharm (Cairo) ; 2013: 875906, 2013.
Article in English | MEDLINE | ID: mdl-26555999

ABSTRACT

Although atomic force microscopy (AFM) has been used extensively to characterize cell membrane structure and cellular processes such as endocytosis and exocytosis, the corrugated surface of the cell membrane hinders the visualization of extracellular entities, such as liposomes, that may interact with the cell. To overcome this barrier, we used 90 nm nanogold particles to label FITC liposomes and monitor their endocytosis on human coronary artery endothelial cells (HCAECs) in vitro. We were able to study the internalization process of gold-coupled liposomes on endothelial cells, by using AFM. We found that the gold-liposomes attached to the HCAEC cell membrane during the first 15-30 min of incubation, liposome cell internalization occurred from 30 to 60 min, and most of the gold-labeled liposomes had invaginated after 2 hr of incubation. Liposomal uptake took place most commonly at the periphery of the nuclear zone. Dynasore monohydrate, an inhibitor of endocytosis, obstructed the internalization of the gold-liposomes. This study showed the versatility of the AFM technique, combined with fluorescent microscopy, for investigating liposome uptake by endothelial cells. The 90 nm colloidal gold nanoparticles proved to be a noninvasive contrast agent that efficiently improves AFM imaging during the investigation of biological nanoprocesses.

10.
ACS Nano ; 5(12): 9382-91, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22032773

ABSTRACT

Nanoparticles and their derivatives have engendered significant recent interest. Despite considerable advances in nanofluidic physics, control over nanoparticle diffusive transport, requisite for a host of innovative applications, has yet to be demonstrated. In this study, we performed diffusion experiments for negatively and positively charged fullerene derivatives (dendritic fullerene-1, DF-1, and amino fullerene, AC60) in 5.7 and 13 nm silicon nanochannels in solutions with different ionic strengths. With DF-1, we demonstrated a gated diffusion whereby precise and reproducible control of the dynamics of the release profile was achieved by tuning the gradient of the ionic strength within the nanochannels. With AC60, we observed a near-surface diffusive transport that produced release rates that were independent of the size of the nanochannels within the range of our experiments. Finally, through theoretical analysis we were able to elucidate the relative importance of physical nanoconfinement, electrostatic interactions, and ionic strength heterogeneity with respect to these gated and near-surface diffusive transport phenomena. These results are significant for multiple applications, including the controlled administration of targeted nanovectors for therapeutics.


Subject(s)
Fullerenes/chemistry , Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Static Electricity , Computer Simulation , Materials Testing , Porosity
11.
Int J Nanomedicine ; 6: 179-95, 2011.
Article in English | MEDLINE | ID: mdl-21499414

ABSTRACT

TNF-α (tumor necrosis factor-α) is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL) in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1) mechanical properties, employing atomic force microscopy; 2) cytoskeletal organization, through fluorescence microscopy; and 3) membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h), for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells); the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with controls. Collectively, these results demonstrate that sufficiently high levels of circulating TNF-α have similar effects on different endothelial districts, and provide additional information for unraveling the possible correlations between circulating pro-inflammatory cytokines and systemic vascular dysfunction.


Subject(s)
Endothelial Cells/drug effects , Endothelial Cells/physiology , Tumor Necrosis Factor-alpha/pharmacology , Actins/metabolism , Biomechanical Phenomena , Cell Adhesion/drug effects , Cell Line , Cytokines/physiology , Cytoskeleton/ultrastructure , Elastic Modulus/drug effects , Endothelial Cells/ultrastructure , Humans , Inflammation Mediators/physiology , Intercellular Adhesion Molecule-1/metabolism , Microscopy, Atomic Force , Microscopy, Fluorescence , Nanomedicine , Tumor Necrosis Factor-alpha/physiology , Viscosity/drug effects
12.
Tex Heart Inst J ; 36(5): 393-403, 2009.
Article in English | MEDLINE | ID: mdl-19876414

ABSTRACT

We evaluated the specific binding of anti-intercellular adhesion molecule 1 (ICAM-1) conjugated liposomes (immunoliposomes, or ILs) to activated human coronary artery endothelial cells (HCAEC) with the purpose of designing a computed tomographic imaging agent for early detection of atherosclerotic plaques. Covalent attachment of anti-ICAM-1 monoclonal antibodies to pre-formed liposomes stabilized with polyethylene glycol yielded ILs, with a coupling efficiency of the ICAM-1 to the liposomes of 10% to 24%. The anti-ICAM-1-labeled ILs had an average diameter of 136 nm as determined by dynamic light-scattering and cryogenic electron microscopy. The ILs' encapsulation of 5-[N-acetyl-(2,3-dihydroxypropyl)-amino)-N, N'-bis(2,3-dihydroxypropyl)-2,4,6-triiodo-benzene-1,3-dicarboxamide (iohexol) was determined to be 18% to 19% by a dialysis technique coupled with ultraviolet detection of free iohexol. This encapsulation corresponded to 30 to 38 mg iodine per mL IL solution, and the ILs exhibited 91% to 98.5% iohexol retention at room temperature and under physiologic conditions. The specific binding of the ILs to cultured, activated HCAEC was measured using flow cytometry, enzyme-linked immunosorbent assays, and fluorescence microscopy. The immunosorbent assays demonstrated the specificity of binding of anti-ICAM-1 to ICAM-1 compared with control studies using nonspecific immunoglobulin G-labeled ILs. Flow cytometry and fluorescence microscopy experiments demonstrated the expression of ICAM-1 on the surface of activated HCAEC. Therefore, our iohexol-filled ILs demonstrated potential for implementation in computed tomographic angiography to noninvasively detect atherosclerotic plaques that are prone to rupture.


Subject(s)
Antibodies, Monoclonal/metabolism , Contrast Media/metabolism , Coronary Angiography/methods , Coronary Artery Disease/immunology , Coronary Vessels/immunology , Endothelium, Vascular/immunology , Intercellular Adhesion Molecule-1/immunology , Iohexol/metabolism , Tomography, X-Ray Computed/methods , Antibody Specificity , Cells, Cultured , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/drug effects , Cryoelectron Microscopy , Endothelium, Vascular/diagnostic imaging , Endothelium, Vascular/drug effects , Enzyme-Linked Immunosorbent Assay , Ethyldimethylaminopropyl Carbodiimide/pharmacology , Flow Cytometry , Humans , Light , Liposomes , Microscopy, Fluorescence , Nanoparticles , Scattering, Radiation , Spectrophotometry, Ultraviolet , Succinimides/pharmacology
13.
Nanomedicine ; 5(1): 42-5, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18783999

ABSTRACT

Herein we report a novel vesicle-forming iodinated contrast agent for applications in computed tomographic (CT) imaging and drug delivery. Specifically, we have chemically modified a phosphatidylcholine lipid that is commonly used in liposome formation to create an iodinated lipid that self-assembles into approximately 50-150 nm iodoliposomes possessing as-prepared imaging contrast functionality. These iodoliposomes are structurally organized such that the iodinated moieties are contained within the vesicle's bilayer, leaving the liposomal interior unoccupied and thus available for encapsulating drugs. The iodoliposomes were characterized using electron microscopy and dynamic light scattering. We also calculated the iodoliposomes' iodine encapsulation efficiency, which was sufficient for use in current CT imaging protocols. These iodinated liposomes could also serve as multifunctional carriers upon the encapsulation of pharmaceutical agents, permitting simultaneous CT imaging and therapeutic treatment. Alternatively, the commercially available iodinated contrast agent iohexol could be encapsulated inside the iodoliposomes' aqueous core to further enchance their imaging contrast.


Subject(s)
Contrast Media/chemistry , Iodine/chemistry , Liposomes/chemistry , Phosphatidylcholines/chemistry , Tomography, X-Ray Computed/methods , Cryoelectron Microscopy , Molecular Structure
14.
Langmuir ; 24(20): 11464-73, 2008 Oct 21.
Article in English | MEDLINE | ID: mdl-18781782

ABSTRACT

Using temporary self-assembled scaffolds to preorganize building blocks is a potentially powerful method for the synthesis of organic nanostructures with programmed shapes. We examined the underlying phenomena governing the loading of hydrophobic monomers into lipid bilayer interior and demonstrated successful control of the amount and ratio of loaded monomers. When excess styrene derivatives or acrylates were added to the aqueous solution of unilamellar liposomes made from saturated phospholipids, most loading occurs within the first few hours. Dynamic light scattering and transmission electron microscopy revealed no evidence of aggregation caused by monomers. Bilayers appeared to have a certain capacity for accommodating monomers. The total volume of loaded monomers is independent of monomer structure. X-ray scattering showed the increase in bilayer thickness consistent with loading monomers into bilayer interior. Loading kinetics is inversely proportional to the hydrophobicity and size of monomers. Loading and extraction kinetic data suggest that crossing the polar heads region is the rate limiting step. Consideration of loading kinetics and multiple equilibria are important for achieving reproducible monomer loading. The total amount of monomers loaded into the bilayer can be controlled by the loading time or length of hydrophobic lipid tails. The ratio of loaded monomers can be varied by changing the ratio of monomers used for loading or by the time-controlled replacement of a preloaded monomer. Understanding and controlling the loading of monomers into bilayers contributes to the directed assembly of organic nanostructures.

16.
Bioorg Med Chem Lett ; 18(7): 2320-3, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18353645

ABSTRACT

A series of aminophosphonates was synthesized, and their ability to carry alanine, a model hydrophilic molecule, across phospholipid bilayer membranes was evaluated. Aminophosphonates facilitate the membrane transport at moderate rates, which make them a suitable platform for the design of carriers for continuous drug release devices.


Subject(s)
Alanine/chemistry , Cell Membrane Permeability/drug effects , Drug Carriers/pharmacology , Lipid Bilayers/chemistry , Organophosphonates/pharmacology , Phospholipids/chemistry , Alanine/metabolism , Biological Transport , Cell Membrane Permeability/physiology , Delayed-Action Preparations , Drug Carriers/chemical synthesis , Lipid Bilayers/metabolism , Organophosphonates/chemical synthesis , Phospholipids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...