Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 45(14): 3969-3972, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32667330

ABSTRACT

Traditional active laser power stabilization schemes are fundamentally limited by quantum shot noise on the in-loop photodetector. One way to overcome this limitation is to implement a nondemolition sensing scheme where laser power fluctuations are transferred to motion of a micro-oscillator, which can be sensed with a high signal-to-noise ratio. In this Letter, we analyze the power stability achievable in a nondemolition scheme limited by quantum and thermal noise. Under the assumption of realistic experimental parameters, we show that generation of a strong bright squeezed quantum state of light should be possible.

2.
Light Sci Appl ; 7: 11, 2018.
Article in English | MEDLINE | ID: mdl-30839613

ABSTRACT

The recent discovery of gravitational waves (GW) by Advanced LIGO (Laser Interferometric Gravitational-wave Observatory) has impressively launched the novel field of gravitational astronomy and allowed us to glimpse exciting objects about which we could previously only speculate. Further sensitivity improvements at the low-frequency end of the detection band of future GW observatories must rely on quantum non-demolition (QND) methods to suppress fundamental quantum fluctuations of the light fields used to readout the GW signal. Here we present a novel concept of how to turn a conventional Michelson interferometer into a QND speed-meter interferometer with coherently suppressed quantum back-action noise. We use two orthogonal polarizations of light and an optical circulator to couple them. We carry out a detailed analysis of how imperfections and optical loss influence the achievable sensitivity. We find that the proposed configuration significantly enhances the low-frequency sensitivity and increases the observable event rate of binary black-hole coalescences in the range of 1 0 2 - 1 0 3 M ⊙ by a factor of up to ~300.

3.
Living Rev Relativ ; 15(1): 5, 2012.
Article in English | MEDLINE | ID: mdl-28179836

ABSTRACT

The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

4.
Phys Rev Lett ; 105(7): 070403, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20868023

ABSTRACT

We propose a protocol for coherently transferring non-Gaussian quantum states from an optical field to a mechanical oscillator. We demonstrate its experimental feasibility in future gravitational-wave detectors and tabletop optomechanical devices. This work not only outlines a feasible way to investigate nonclassicality in macroscopic optomechanical systems, but also presents a new and elegant approach for solving non-Markovian open quantum dynamics in general linear systems.

5.
Phys Rev Lett ; 103(10): 100402, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19792287

ABSTRACT

We derive a standard quantum limit for probing mechanical energy quantization in a class of systems with mechanical modes parametrically coupled to external degrees of freedom. To resolve a single mechanical quantum, it requires a strong-coupling regime-the decay rate of external degrees of freedom is smaller than the parametric coupling rate. In the case for cavity-assisted optomechanical systems, e.g., the one proposed by Thompson et al. [Nature (London) 452, 72 (2008)], zero-point motion of the mechanical oscillator needs to be comparable to the linear dynamical range of the optical system which is characterized by the optical wavelength divided by the cavity finesse.

SELECTION OF CITATIONS
SEARCH DETAIL
...