Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Appl Opt ; 62(1): 16-20, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36606843

ABSTRACT

The laser-induced damage threshold (LIDT) was measured for a Z n G e P 2 crystal exposed to 0.3-9.5 ps 1030-nm laser pulses. Single-pulse LIDT fluence was ∼0.22J/c m 2 for the laser pulse widths of 0.3-3.5 ps and increased until 0.76J/c m 2 for 9.5-ps pulses. Multi-pulse LIDT fluence for 0.3-ps pulses at repetition frequencies in the range of 100 Hz-1 kHz was ∼0.053J/c m 2 and decreased further at higher, multi-kHz, pulse repetition frequencies. The coating of the Z n G e P 2 crystal surface with an anti-reflection multi-layer thin film increased the multi-pulse LIDT by one order of magnitude, up to 0.62J/c m 2 (about 2T W/c m 2). The significant increase in LIDT coupled with a decrease in reflection losses provides a way to cardinally improve efficiency of frequency conversion of popular 1-µm ultrashort pulses into mid- and far-IR ranges with a thin AR-coated Z n G e P 2 crystal sample.

2.
Opt Lett ; 47(14): 3487-3490, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35838709

ABSTRACT

Microscale filamentation of 0.25 NA-focused, linearly and circularly polarized 1030 nm and 515 nm ultrashort laser pulses of variable pulse widths in fused silica, fluorite, and natural and synthetic diamonds demonstrates the Raman-Kerr effect in the form of critical pulse power magnitudes, proportional to squared wavelength and inversely proportional to laser pulse width of 0.3-10 ps. The first trend represents the common spectral relationship between the quantities, while the second indicates its time-integrated inertial contribution of Raman-active lattice polarization, appearing in transmission spectra via ultrafast optical-phonon Raman scattering. The optical-phonon contribution to the nonlinear polarization could come from laser field-induced spontaneous/stimulated Raman scattering and coherent optical phonons generated by electron-hole plasma with its clamped density in the nonlinear focus. Almost constant product value of the (sub)picosecond laser pulse widths and corresponding critical pulse powers for self-focusing and filamentation in the dielectrics ("critical pulse energy") apparently implies constant magnitude of the nonlinear polarization and other "clamped" filamentation parameters at the given wavelength.

3.
Appl Opt ; 60(31): H12-H19, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34807148

ABSTRACT

Results concerning the controllable ablation of nano-layered thin films (NLTF) by femtosecond laser pulses are presented. Investigated samples were titanium-aluminum bilayers, deposited on a silicon substrate, with the top titanium or aluminum layer of variable thickness on the surface. Irradiation was done in ambient air with single femtosecond laser pulses under standard laboratory conditions. The samples were analyzed by complementary methods of optical and scanning electron microscopy and optical profilometry, exhibiting laser-fluence-dependent ablative removal either of the top layer or the entire bilayer or even partial ablation of the underlying silicon substrate. The removal (spallation) threshold fluences for the topmost layer are scalable versus its thickness almost irrespectively of its material, being rather selective for the Ti-coated samples and much less selective for the Al-coated samples. The removal of the entire bilayers was found to be strongly influenced by electronic properties of the underlying metallic layer, dictating the NLTF-Si adhesion, heat conduction, and capacity in the NLTFs toward the NLTF-Si interface and beyond, as well as by their thermophysical characteristics, e.g., almost twice higher melting temperature and enthalpy for Ti. As a result, precise fs-laser machining of the entire NLTFs is pronounced and selective for the samples with the fusible Al at the low-adhesion Al-Si interfaces, compared with the incomplete NLTF removal from the high-adhesion and refractory Ti-Si interfaces.

4.
Opt Express ; 29(8): 12616-12624, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33985015

ABSTRACT

Topography-dependent tuning of water wettability was achieved on a stainless steel surface textured by nanosecond-laser pulses at different laser fluences, with the minimal contribution of the surface chemical modification. Such differently-wet neighboring surface spots were demonstrated to drive an autonomous directional water flow. A series of elementary microfluidic devices based on the spatial wetting gradients were designed and tested as building blocks of "green", energy-saving autonomous microfluidic circuits.

5.
Opt Lett ; 46(6): 1438-1441, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33720206

ABSTRACT

Ultrafast heating of photoionized free electrons by high-numerical-aperture (0.25-0.65) focused visible-range ultrashort laser pulses provides their resonant impact trapping into intra-gap electronic states of point defect centers in a natural IaA/B diamond with a high concentration of poorly aggregated nitrogen impurity atoms. This excites fine-structured, broadband (UV-near-infrared) polychromatic luminescence of the centers over the entire bandgap. The observed luminescence spectra revealed substitutional nitrogen interaction with non-equilibrium intrinsic carbon vacancies, produced simultaneously as Frenkel "vacancy-interstitial" pairs during the laser exposure.

6.
Opt Lett ; 45(8): 2160-2163, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32287181

ABSTRACT

Transient stimulated Raman scattering (SRS) of 0.3 ps 515 nm laser pulses in ${\rm BaWO_4}$BaWO4 crystal was experimentally demonstrated with efficiency up to ${\sim}{20}\% $∼20% for the Stokes component with a wavenumber of ${\sim}{925}\;{{\rm cm}^{ - 1}}$∼925cm-1 in a simple single-pass geometry. This anomalous high efficiency was obtained due to the laser pulse self-phase modulation resulting in spectral broadening and seeding the SRS. The applicability of seed pulse production for a high-pressure sub-picosecond ${{\rm CO}_2}$CO2 laser amplifier via difference frequency generation in ${{\rm LiGaS}_2}$LiGaS2 crystal was numerically verified.

7.
Opt Lett ; 45(7): 2026-2029, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32236059

ABSTRACT

Single microscale filaments were produced in monocrystalline Ia-type diamond by 1030 nm, 300 fs laser pulses tightly focused at NA = 0.3 and different peak powers, visualized by transverse imaging and spectrally characterized by longitudinal micro-spectroscopy, using intrinsic UV A-band photoluminescence (PL) with its peak at about 430 nm. Power-dependent scaling relationships for the local PL yield and diameters of the accompanying luminous micro-channels of recombining electron-hole plasma indicate a transition from three-photon absorption to free-carrier plasma absorption, as the consequent energy deposition mechanisms at increasing peak laser power. Power-dependent elongation of the luminous micro-channels versus peak laser power fitted by a Marburger formula yields, on average a diffraction-based estimate of 0.6 MW critical power for self-focusing within the diamond at the pump laser wavelength of 1030 nm.

8.
Opt Lett ; 44(5): 1129-1132, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30821788

ABSTRACT

Low- and ultralow-energy tightly focused 200 fs, 515 nm donut-shaped laser pulses at 0.25 and 0.65 NA focusing were used for single-shot ablative pulse-energy scalable nanopatterning of 50 nm thick gold film and the following plasmonic excitation of dye monolayer photoluminescence (PL) in the fabricated nanostructures, respectively. The same pulses at much lower, non-ablative nanojoule energies, and the same focusing and linear, azimuthal, or radial polarizations provided efficient spectrally and symmetry-matched excitation of both localized and delocalized surface electromagnetic modes in the separate, ring-like through holes and their arrays in the film envisioned by our modeling, thus resulting in a polarization-sensitive yield of rhodamine 6G dye PL. The demonstrated consistency between the symmetries of the donut-shaped low-energy photo-exciting laser beam, its polarization state, and the donut-shaped gold nanostructures, produced by the same beam at high, ablative pulse energies, paves the way to smart, self-consistent nanofabrication and plasmonic sensing, when the structured light interacts with the consistently structured matter.

9.
Opt Lett ; 44(2): 283-286, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30644881

ABSTRACT

We report on high-quality infrared (IR)-resonant plasmonic nanoantenna arrays fabricated on a thin gold film by tightly focused femtosecond (fs) laser pulses coming at submegahertz repetition rates at a printing rate of 10 million elements per second. To achieve this, the laser pulses were spatially multiplexed by fused silica diffractive optical elements into 51 identical submicrometer-sized laser spots arranged into a linear array at periodicity down to 1 µm. The demonstrated high-throughput nanopatterning modality indicates fs laser maskless microablation as an emerging robust, flexible, and competitive lithographic tool for advanced fabrication of IR-range plasmonic sensors for environmental sensing, chemosensing, and biosensing.


Subject(s)
Infrared Rays , Lasers , Optical Phenomena , Printing , Silicon Dioxide/chemistry
10.
Sci Rep ; 8(1): 16489, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30405143

ABSTRACT

Surface-enhanced spectroscopy (SES) techniques, including surface-enhanced photoluminescence (SEPL), Raman scattering (SERS) and infrared absorption (SEIRA), represent powerful biosensing modalities, allowing non-invasive label-free identification of various molecules and quantum emitters in the vicinity of nanotextured surfaces. Enhancement of multi-wavelength (vis-IR) excitation of analyte molecules of interest atop a single textured substrate could pave the way toward ultimate chemosensing performance and further widespread implementation of the SES-based approaches in various crucial areas, such as point-ofcare diagnostics. In this paper, an easy-to-implement ultrafast direct laser printing via partial spallation of thermally-thick silver films and subsequent large-scale magnetron deposition of nanometer-thick Au layers of variable thickness was implemented to produce bimetallic textured surfaces with the cascaded nanotopography. The produced bimetallic textures demonstrate the strong broadband plasmonic response over the entire visible spectral range. Such plasmonic performance was confirmed by convenient spectroscopy-free Red-Green-Blue (RGB) color analysis of the dark-field (DF) scattering images supported by numerical calculations of the electromagnetic (EM) "near-fields", as well as comprehensive DF spectroscopic characterization. Bimetallic laser-printed nanotextures, which can be easily printed at ultrafast (square millimeters per second) rate, using galvanometric scanning, exhibited strong enhancement of the SEPL (up to 75-fold) and SERS (up to 106 times) yields for the organic dye molecules excited at various wavelengths. Additionally, comprehensive optical and sensing characterization of the laser-printed bimetallic surface structures allows substantiating the convenient spectroscopy-free RGB color analysis as a valuable tool for predictive assessment of the plasmonic properties of the various irregularly and quasi-periodically nanotextured surfaces.

11.
Opt Lett ; 42(14): 2838-2841, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28708182

ABSTRACT

Multi-sector broadband diffractive optical elements (DOEs) were designed and fabricated from fused silica for high-efficiency multiplexing of femtosecond and nanosecond Gaussian laser beams into multiple (up to one 100) optically tunable microbeams with increased high-numerical aperture (NA) focal depths. Various DOE-related issues, such as high-NA laser focusing, laser pulsewidth, and DOE symmetry-dependent heat conduction effects, as well as the corresponding spatial resolution, were discussed in the context of high-throughput laser patterning. The increased focal depths provided by such DOEs, their high multiplexing efficiency and damage threshold, as well as easy-to-implement optical shaping of output microbeams provide advanced opportunities for direct, mask-free, and vacuum-free high-throughput subtractive (ablative) and displacive pulsed-laser patterning of various nanoplasmonic films for surface-enhanced spectroscopy, sensing, and light control.

12.
Forensic Sci Int Genet ; 6(6): 798-809, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22483764

ABSTRACT

A set of 13 dinucleotide STR loci (G1A, G10B, G1D, G10L, MU05, MU09, MU10, MU15, MU23, MU26, MU50, MU51, MU59) were selected as candidate markers for a DNA forensic profiling system for Northern European brown bear (Ursus arctos). We present results from validation of the markers with respect to their sensitivity, species specificity and performance (precision, heterozygote balance and stutter ratios). All STRs were amplified with 0.6ng template input, and there were no false bear genotypes in the cross-species amplification tests. The validation experiments showed that stutter ratios and heterozygote balance was more pronounced than in the tetranucleotide loci used in human forensics. The elevated ratios of stutter and heterozygote balance at the loci validated indicate that these dinucleotide STRs are not well suited for interpretation of individual genotypes in mixtures. Based on the results from the experimental validations we discuss the challenges related to genotyping dinucleotide STRs in single source samples. Sequence studies of common alleles showed that, in general, the size variation of alleles corresponded with the variation in number of repeats. The samples characterized by sequence analysis may serve as standard DNA samples for inter laboratory calibration. A total of 479 individuals from eight Northern European brown bear populations were analyzed in the 13 candidate STRs. Locus MU26 was excluded as a putative forensic marker after revealing large deviations from expected heterozygosity likely to be caused by null-alleles at this locus. The remaining STRs did not reveal significant deviations from Hardy-Weinberg equilibrium expectations except for loci G10B and MU10 that showed significant deviations in one population each, respectively. There were 9 pairwise locus comparisons that showed significant deviation from linkage equilibrium in one or two out of the eight populations. Substantial genetic differentiation was detected in some of the pairwise population comparisons and the average estimate of population substructure (F(ST)) was 0.09. The average estimate of inbreeding (F(IS)) was 0.005. Accounting for population substructure and inbreeding the total average probability of identity in each of the eight populations was lower than 1.1×10(-9) and the total average probability of sibling identity was lower than 1.3×10(-4). The magnitude of these measurements indicates that if applying these twelve STRs in a DNA profiling system this would provide individual specific evidence.


Subject(s)
DNA Fingerprinting/methods , Microsatellite Repeats , Ursidae/genetics , Alleles , Animals , Conservation of Natural Resources , DNA Primers , Databases, Nucleic Acid , Europe , Genetic Loci , Genetic Markers , Heterozygote , Linkage Disequilibrium , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...