Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(6)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37374988

ABSTRACT

Bacillus subtilis is traditionally classified as a PGPR that colonizes plant roots through biofilm formation. The current study focused on investigating the influence of various factors on bacilli biofilm formation. In the course of the study, the levels of biofilm formation by the model strain B. subtilis WT 168 and on its basis created regulatory mutants, as well as strains of bacilli with deleted extracellular proteases under conditions of changes in temperature, pH, salt and oxidative stress and presence of divalent metals ions. B. subtilis 168 forms halotolerant and oxidative stress-resistant biofilms at a temperature range of 22 °C-45 °C and a pH range of 6-8.5. The presence of Ca2+, Mn2+ and Mg2+ upsurges the biofilm development while an inhibition with Zn2+. Biofilm formation level was higher in protease-deficient strains. Relative to the wild-type strain, degU mutants showed a decrease in biofilm formation, abrB mutants formed biofilms more efficiently. spo0A mutants showed a plummeted film formation for the first 36 h, followed by a surge after. The effect of metal ions and NaCl on the mutant biofilms formation is described. Confocal microscopy indicated that B. subtilis mutants and protease-deficient strains differ in matrix structure. The highest content of amyloid-like proteins in mutant biofilms was registered for degU-mutants and protease-deficient strains.

2.
Microorganisms ; 11(6)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37375011

ABSTRACT

Due to their capacity to produce antimicrobial peptides that can prevent the growth of diseases, many Bacillus spp. are beneficial to plants. In this study, we looked into the antagonistic activity of the B. pumilus 3-19 strain and its derivatives following targeted genome editing. Two peptide genes with antibacterial action, bacilysin (bac) and bacteriocin (bact), and the sigF gene, which encodes the sigma factor of sporulation, were specifically inactivated using the CRISPR-Cas9 system in the genome of B. pumilus 3-19. Antibacterial activity against B. cereus and Pantoea brenneri decreased as a result of the inactivation of target genes in the B. pumilus 3-19 genome, with a noticeable effect against bacilysin. The growth dynamics of the culture changed when the bac, bact, and sigF genes were inactivated, and the altered strains had less proteolytic activity. An asporogenic mutant of B. pumilus 3-19 was obtained by inactivating the sigF gene. It has been proven that bacilysin plays a unique part in the development of B. pumilus 3-19's antagonistic action against soil microorganisms.

3.
Int J Mol Sci ; 25(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203233

ABSTRACT

The minor secreted proteinase of B. pumilus 3-19 MprBp classified as the unique bacillary adamalysin-like enzyme of the metzincin clan. The functional role of this metalloproteinase in the bacilli cells is not clear. Analysis of the regulatory region of the mprBp gene showed the presence of potential binding sites to the transcription regulatory factors Spo0A (sporulation) and DegU (biodegradation). The study of mprBp activity in mutant strains of B. subtilis defective in regulatory proteins of the Spo- and Deg-systems showed that the mprBp gene is partially controlled by the Deg-system of signal transduction and independent from the Spo-system.


Subject(s)
Bacillus pumilus , Bacillus , Lacticaseibacillus casei , Bacillus pumilus/genetics , Metalloendopeptidases , Biodegradation, Environmental , Firmicutes
4.
mSphere ; 7(6): e0021222, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36218346

ABSTRACT

Bacteria can quickly adapt to constantly changing environments through a number of mechanisms, including secretion of secondary metabolites, peptides, and proteins. Serratia marcescens, an emerging pathogen with growing clinical importance due to its intrinsic resistance to several classes of antibiotics, can cause an array of infections in immunocompromised individuals. To better control the spread of S. marcescens infections, it is critical to identify additional targets for bacterial growth inhibition. We found that extracellular metabolites produced by the wild-type organism in response to peroxide exposure had a protective effect on an otherwise-H2O2-sensitive ΔmacAB indicator strain. Detailed analysis of the conditioned medium demonstrated that the protective effect was associated with a low-molecular-weight heat-sensitive and proteinase K-sensitive metabolite. Furthermore, liquid chromatography-tandem mass spectrometry analysis of the low-molecular-weight proteins present in the conditioned medium led to identification of the previously uncharacterized DUF1471-containing protein TBU67220 (SrfN). We found that loss of the srfN gene did not have an impact on the production of extracellular enzymes. However, the S. marcescens mutant lacking SrfN was significantly more sensitive to growth in medium with a low pH and to exposure to oxidative stress. Both defects were fully rescued by complementation. Thus, our results indicate that SrfN, a low-molecular-weight DUF1471-containing protein, is involved in S. marcescens SM6 adaptation to adverse environmental conditions. IMPORTANCE Serratia marcescens is ubiquitous in the environment and can survive in water, soil, plants, insects, and animals, and it can also cause infections in humans. In the face of disturbances such as oxidative or low-pH stress, bacteria adapt, survive, and recover through several mechanisms, including changes in their secretome. We show that a hydrogen peroxide-exposed S. marcescens milieu contains a small previously uncharacterized DUF1471-containing protein similar to the SrfN protein in Salmonella enterica serovar Typhimurium, and we illustrate the role of this protein in bacterial survival during acid and oxidative stresses.


Subject(s)
Hydrogen Peroxide , Serratia marcescens , Humans , Animals , Serratia marcescens/genetics , Serratia marcescens/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Culture Media, Conditioned , Anti-Bacterial Agents/metabolism , Oxidative Stress
5.
mSphere ; 6(2)2021 03 10.
Article in English | MEDLINE | ID: mdl-33692192

ABSTRACT

Serratia marcescens is an emerging pathogen with increasing clinical importance due to its intrinsic resistance to several classes of antibiotics. The chromosomally encoded drug efflux pumps contribute to antibiotic resistance and represent a major challenge for the treatment of bacterial infections. The ABC-type efflux pump MacAB was previously linked to macrolide resistance in Escherichia coli and Salmonella enterica serovar Typhimurium. The role of the MacAB homolog in antibiotic resistance of S. marcescens is currently unknown. We found that an S. marcescens mutant lacking the MacAB pump did not show increased sensitivity to the macrolide antibiotic erythromycin but was significantly more sensitive to aminoglycoside antibiotics and polymyxins. We also showed that, in addition to its role in drug efflux, the MacAB efflux pump is required for swimming motility and biofilm formation. We propose that the motility defect of the ΔmacAB mutant is due, at least in part, to the loss of functional flagella on the bacterial surface. Furthermore, we found that the promoter of the MacAB efflux pump was active during the initial hours of growth in laboratory medium and that its activity was further elevated in the presence of hydrogen peroxide. Finally, we demonstrate a complete loss of ΔmacAB mutant viability in the presence of peroxide, which is fully restored by complementation. Thus, the S. marcescens MacAB efflux pump is essential for survival during oxidative stress and is involved in protection from polymyxins and aminoglycoside antibiotics.IMPORTANCE The opportunistic pathogen Serratia marcescens can cause urinary tract infections, respiratory infections, meningitis, and sepsis in immunocompromised individuals. These infections are challenging to treat due to the intrinsic resistance of S. marcescens to an extensive array of antibiotics. Efflux pumps play a crucial role in protection of bacteria from antimicrobials. The MacAB efflux pump, previously linked to efflux of macrolides in Escherichia coli and protection from oxidative stress in Salmonella enterica serovar Typhimurium, is not characterized in S. marcescens We show the role of the MacAB efflux pump in S. marcescens protection from aminoglycoside antibiotics and polymyxins, modulation of bacterial motility, and biofilm formation, and we illustrate the essential role for this pump in bacterial survival during oxidative stress. Our findings make the MacAB efflux pump an attractive target for inhibition to gain control over S. marcescens infections.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Oxidative Stress , Polymyxins/pharmacology , Serratia marcescens/drug effects , Serratia marcescens/genetics , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial , Serratia marcescens/metabolism
6.
Front Microbiol ; 11: 1782, 2020.
Article in English | MEDLINE | ID: mdl-32849401

ABSTRACT

Bacillus spp. are an affordable source of enzymes due to their wide distribution, safety in work, ease of cultivation, and susceptibility to genetic transformations. Researchers are particularly interested in proteolytic enzymes, which constitute one of the most diverse groups of microbial proteins in terms of properties. Despite the long history of their research, this group of enzymes continue to show great potential for practical application in the biomedical industry, as well as in the agricultural industry. Thus, the unique properties of bacillary proteinases, such as stability in a wide range of temperatures and pH, high specificity, biodegradability of a wide range of substrates, and the high potential of sequenced Bacillus genomes are a powerful foundation for the development of new biotechnologies. The current review aims to discuss recent studies on various enzymes in particular, proteinases produced by bacteria of the genus Bacillus, along with their prospective practical applications. This article also presents an interpretive summary of the recent developments on the usage of probiotic Bacillus strains as potential feed additives.

SELECTION OF CITATIONS
SEARCH DETAIL
...