Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 18(1): 169-79, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19177361

ABSTRACT

Ions can significantly modulate the solution interactions of proteins. We aim to demonstrate that the salt-dependent reversible heptamerization of a fusion protein called peptibody A or PbA is governed by anion-specific interactions with key arginyl and lysyl residues on its peptide arms. Peptibody A, an E. coli expressed, basic (pI = 8.8), homodimer (65.2 kDa), consisted of an IgG1-Fc with two, C-terminal peptide arms linked via penta-glycine linkers. Each peptide arm was composed of two, tandem, active sequences (SEYQGLPPQGWK) separated by a spacer (GSGSATGGSGGGASSGSGSATG). PbA was monomeric in 10 mM acetate, pH 5.0 but exhibited reversible self-association upon salt addition. The sedimentation coefficient (s(w)) and hydrodynamic diameter (D(H)) versus PbA concentration isotherms in the presence of 140 mM NaCl (A5N) displayed sharp increases in s(w) and D(H), reaching plateau values of 9 s and 16 nm by 10 mg/mL PbA. The D(H) and sedimentation equilibrium data in the plateau region (>12 mg/mL) indicated the oligomeric ensemble to be monodisperse (PdI = 0.05) with a z-average molecular weight (M(z)) of 433 kDa (stoichiometry = 7). There was no evidence of reversible self-association for an IgG1-Fc molecule in A5N by itself or in a mixture containing fluorescently labeled IgG1-Fc and PbA, indicative of PbA self-assembly being mediated through its peptide arms. Self-association increased with pH, NaCl concentration, and anion size (I(-) > Br(-) > Cl(-) > F(-)) but could be inhibited using soluble Trp-, Phe-, and Leu-amide salts (Trp > Phe > Leu). We propose that in the presence of salt (i) anion binding renders PbA self-association competent by neutralizing the peptidyl arginyl and lysyl amines, (ii) self-association occurs via aromatic and hydrophobic interactions between the ..xxCTRWPWMC..xxxCTRWPWMCxx.. motifs, and (iii) at >10 mg/mL, PbA predominantly exists as heptameric clusters.


Subject(s)
Anions/metabolism , Escherichia coli Proteins/metabolism , Protein Interaction Domains and Motifs/physiology , Protein Multimerization/physiology , Recombinant Fusion Proteins/metabolism , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Humans , Light , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Binding/physiology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Scattering, Radiation , Ultracentrifugation
2.
Biochemistry ; 47(18): 5088-100, 2008 May 06.
Article in English | MEDLINE | ID: mdl-18407665

ABSTRACT

The Fc region has two highly conserved methionine residues, Met 33 (C(H)3 domain) and Met 209 (C(H)3 domain), which are important for the Fc's structure and biological function. To understand the effect of methionine oxidation on the structure and stability of the human IgG1 Fc expressed in Escherichia coli, we have characterized the fully oxidized Fc using biophysical (DSC, CD, and NMR) and bioanalytical (SEC and RP-HPLC-MS) methods. Methionine oxidation resulted in a detectable secondary and tertiary structural alteration measured by circular dichroism. This is further supported by the NMR data. The HSQC spectral changes indicate the structures of both C(H)2 and C(H)3 domains are affected by methionine oxidation. The melting temperature (Tm) of the C(H)2 domain of the human IgG1 Fc was significantly reduced upon methionine oxidation, while the melting temperature of the C(H)3 domain was only affected slightly. The change in the C(H)2 domain T m depended on the extent of oxidation of both Met 33 and Met 209. This was confirmed by DSC analysis of methionine-oxidized samples of two site specific methionine mutants. When incubated at 45 degrees C, the oxidized Fc exhibited an increased aggregation rate. In addition, the oxidized Fc displayed an increased deamidation (at pH 7.4) rate at the Asn 67 and Asn 96 sites, both located on the C(H)2 domain, while the deamidation rates of the other residues were not affected. The methionine oxidation resulted in changes in the structure and stability of the Fc, which are primarily localized to the C(H)2 domain. These changes can impact the Fc's physical and covalent stability and potentially its biological functions; therefore, it is critical to monitor and control methionine oxidation during manufacturing and storage of protein therapeutics.


Subject(s)
Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Amino Acid Sequence , Chromatography, High Pressure Liquid , Circular Dichroism , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/isolation & purification , Immunoglobulin G/genetics , Kinetics , Methionine/metabolism , Models, Molecular , Molecular Sequence Data , Mutation/genetics , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Protein Denaturation , Protein Structure, Tertiary , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...