Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Retrovirology ; 5: 10, 2008 Jan 31.
Article in English | MEDLINE | ID: mdl-18237398

ABSTRACT

BACKGROUND: The HIV-1 envelope glycoprotein gp120, which mediates viral attachment to target cells, consists for approximately 50% of sugar, but the role of the individual sugar chains in various aspects of gp120 folding and function is poorly understood. Here we studied the role of the carbohydrate at position 386. We identified a virus variant that had lost the 386 glycan in an evolution study of a mutant virus lacking the disulfide bond at the base of the V4 domain. RESULTS: The 386 carbohydrate was not essential for folding of wt gp120. However, its removal improved folding of a gp120 variant lacking the 385-418 disulfide bond, suggesting that it plays an auxiliary role in protein folding in the presence of this disulfide bond. The 386 carbohydrate was not critical for gp120 binding to dendritic cells (DC) and DC-mediated HIV-1 transmission to T cells. In accordance with previous reports, we found that N386 was involved in binding of the mannose-dependent neutralizing antibody 2G12. Interestingly, in the presence of specific substitutions elsewhere in gp120, removal of N386 did not result in abrogation of 2G12 binding, implying that the contribution of N386 is context dependent. Neutralization by soluble CD4 and the neutralizing CD4 binding site (CD4BS) antibody b12 was significantly enhanced in the absence of the 386 sugar, indicating that this glycan protects the CD4BS against antibodies. CONCLUSION: The carbohydrate at position 386 is not essential for protein folding and function, but is involved in the protection of the CD4BS from antibodies. Removal of this sugar in the context of trimeric Env immunogens may therefore improve the elicitation of neutralizing CD4BS antibodies.


Subject(s)
Asparagine/chemistry , Carbohydrates/immunology , Dendritic Cells/metabolism , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Protein Folding , Asparagine/metabolism , Asparagine/physiology , Binding Sites , CD4 Antigens/immunology , Carbohydrates/chemistry , HIV Envelope Protein gp120/genetics , HIV-1/chemistry , HeLa Cells , Humans , Neutralization Tests
2.
Retrovirology ; 1: 3, 2004 Mar 09.
Article in English | MEDLINE | ID: mdl-15169554

ABSTRACT

BACKGROUND: We previously described the construction of an HIV-1 envelope glycoprotein complex (Env) that is stabilized by an engineered intermolecular disulfide bond (SOS) between gp120 and gp41. The modified Env protein antigenically mimics the functional wild-type Env complex. Here, we explore the effects of the covalent gp120 - gp41 interaction on virus replication and evolution. RESULTS: An HIV-1 molecular clone containing the SOS Env gene was only minimally replication competent, suggesting that the engineered disulfide bond substantially impaired Env function. However, virus evolution occurred in cell culture infections, and it eventually always led to elimination of the intermolecular disulfide bond. In the course of these evolution studies, we identified additional and unusual second-site reversions within gp41. CONCLUSIONS: These evolution paths highlight residues that play an important role in the interaction between gp120 and gp41. Furthermore, our results suggest that a covalent gp120 - gp41 interaction is incompatible with HIV-1 Env function, probably because this impedes conformational changes that are necessary for fusion to occur, which may involve the complete dissociation of gp120 from gp41.


Subject(s)
Evolution, Molecular , Gene Products, env/genetics , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/genetics , HIV-1/physiology , Amino Acid Substitution , Cell Line, Tumor , Disulfides/analysis , Humans , Transfection , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...