Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1107021, 2023.
Article in English | MEDLINE | ID: mdl-36994208

ABSTRACT

Introduction: In prostate cancer, long-term treatment directed against androgens often leads to the development of metastatic castration-resistant prostate cancer, which is more aggressive and not curatively treatable. Androgen deprivation results in elevated epiregulin expression in LNCaP cells which is a ligand of EGFR. This study aims to reveal the expression and regulation of epiregulin in different prostate cancer stages enabling a more specific molecular characterization of different prostate carcinoma types. Methods: Five different prostate carcinoma cell lines were used to characterize the epiregulin expression on the RNA and protein levels. Epiregulin expression and its correlation with different patient conditions were further analyzed using clinical prostate cancer tissue samples. Additionally, the regulation of epiregulin biosynthesis was examined at transcriptional, post-transcriptional and release level. Results: An increased epiregulin secretion is detected in castration-resistant prostate cancer cell lines and prostate cancer tissue samples indicating a correlation of epiregulin expression with tumor recurrence, metastasis and increased grading. Analysis regarding the activity of different transcription factors suggests the involvement of SMAD2/3 in the regulation of epiregulin expression. In addition, miR-19a, -19b, and -20b are involved in post-transcriptional epiregulin regulation. The release of mature epiregulin occurs via proteolytic cleavage by ADAM17, MMP2, and MMP9 which are increased in castration-resistant prostate cancer cells. Discussion: The results demonstrate epiregulin regulation by different mechanism and suggest a potential role as a diagnostic tool to detect molecular alterations in prostate cancer progression. Additionally, although EGFR inhibitors false in prostate cancer, epiregulin could be a therapeutic target for patients with castration-resistant prostate cancer.

2.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142535

ABSTRACT

A new life starts with successful fertilization whereby one sperm from a pool of millions fertilizes the oocyte. Sperm motility is one key factor for this selection process, which depends on a coordinated flagellar movement. The flagellar beat cycle is regulated by Ca2+ entry via CatSper, cAMP, Mg2+, ADP and ATP. This study characterizes the effects of these parameters for 4D sperm motility, especially for flagellar movement and the conserved clockwise (CW) path chirality of murine sperm. Therefore, we use detergent-extracted mouse sperm and digital holographic microscopy (DHM) to show that a balanced ratio of ATP to Mg2+ in addition with 18 µM cAMP and 1 mM ADP is necessary for controlled flagellar movement, induction of rolling along the long axis and CW path chirality. Rolling along the sperm's long axis, a proposed mechanism for sperm selection, is absent in sea urchin sperm, lacking flagellar fibrous sheath (FS) and outer-dense fibers (ODFs). In sperm lacking CABYR, a Ca2+-binding tyrosine-phosphorylation regulated protein located in the FS, the swim path chirality is preserved. We conclude that specific concentrations of ATP, ADP, cAMP and Mg2+ as well as a functional CABYR play an important role for sperm motility especially for path chirality.


Subject(s)
Detergents , Sperm Motility , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium-Binding Proteins/metabolism , Male , Mice , Phosphorylation , Semen/metabolism , Spermatozoa/metabolism , Tyrosine/metabolism
3.
FASEB J ; 36(5): e22288, 2022 05.
Article in English | MEDLINE | ID: mdl-35438819

ABSTRACT

Successful fertilization depends on sperm motility adaptation. Ejaculated and activated sperm beat symmetrically in high frequency, move linearly, and swim with clockwise chirality. After capacitation, sperm beat asymmetrically with lower amplitude and a high lateral head excursion. This motility change called hyperactivation requires CatSper activation and an increase in intracellular Ca2+ . However, whether CatSper-mediated Ca2+ influx participates in controlling the swim path chirality is unknown. In this study, we show that the clockwise path chirality is preserved in mouse sperm regardless of capacitation state but is lost in the sperm either lacking the entire CatSper channel or its Ca2+ sensor EFCAB9. Pharmacological inhibition of CatSper with either mibefradil or NNC 55-0396 leads to the same loss in swim path chirality. Exposure of sperm to the recombinant N-terminal part of the zona pellucida protein 2 randomizes chirality in capacitated cells, but not in non-capacitated ones. We conclude that Ca2+ sensitive regulation of CatSper activity orchestrates clockwise swim path chirality of sperm and any substantial change, such as the physiological stimulus of zona pellucida glycoproteins, results in a loss of chirality.


Subject(s)
Calcium Channels , Sperm Motility , Animals , Calcium/metabolism , Calcium Channels/metabolism , Cell Membrane/metabolism , Male , Mice , Sperm Capacitation , Spermatozoa/metabolism , Zona Pellucida/metabolism
4.
Tumour Biol ; 43(1): 11-26, 2021.
Article in English | MEDLINE | ID: mdl-33935126

ABSTRACT

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Etoposide/pharmacology , MicroRNAs/metabolism , Retinal Neoplasms/pathology , Retinoblastoma/pathology , Retinoic Acid Receptor alpha/metabolism , 3' Untranslated Regions , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cell Survival , Drug Resistance, Neoplasm/genetics , Etoposide/therapeutic use , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Protein Binding , Retinal Neoplasms/diet therapy , Retinal Neoplasms/genetics , Retinoblastoma/drug therapy , Retinoblastoma/genetics , Retinoic Acid Receptor alpha/genetics
5.
Cancers (Basel) ; 13(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540707

ABSTRACT

Patients with advanced prostate carcinoma are often treated with an androgen deprivation therapy but long-term treatment can result in a metastatic castration-resistant prostate cancer. This is a more aggressive, untreatable tumor recurrence often containing areas of neuroendocrine differentiated prostate cancer cells. Using an in vitro model of NE-like cancer cells, it could previously be shown that neuroendocrine differentiation of LNCaP cells leads to a strong deregulation of mRNA and miRNA expression. We observe elevated RNA and protein levels of AKT Serine/Threonine Kinase 3 (AKT3) in neuroendocrine-like LNCaP cells. We used prostate resections from patients with neuroendocrine prostate cancer to validate these results and detect a co-localization of neuroendocrine marker genes with AKT3. Analysis of downstream target genes FOXO3A and GSK3 strengthens the assumption AKT3 may play a role in neuroendocrine differentiation. Overexpression of AKT3 shows an increased survival rate of LNCaP cells after apoptosis induction, which in turn reflects the significance in vivo or for treatment. Furthermore, miR-17, -20b and -106b, which are decreased in neuroendocrine-like LNCaP cells, negatively regulate AKT3 biosynthesis. Our findings demonstrate AKT3 as a potential therapeutic target and diagnostic tool in advanced neuroendocrine prostate cancer and a new mRNA-miRNA interaction with a potential role in neuroendocrine differentiation of prostate cancer.

6.
Sci Rep ; 10(1): 18022, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093529

ABSTRACT

Prostate carcinoma (PCa) is the second most commonly diagnosed cancer in males worldwide. Among hereditary genetic mutations and nutrient factors, a link between the deregulation of microRNA (miRNA) expression and the development of prostate carcinoma is assumed. MiRNAs are small non-coding RNAs which post-transcriptionally regulate gene expression and which are involved in tumour development and progression as oncogenes or tumour suppressors. Although many genes could be confirmed as targets for deregulated miRNAs, the impact of differentially expressed miRNA and their regulatory target genes on prostate tumour development and progression are not fully understood yet. We could validate RBMS1, a barely described RNA-binding protein, as a new target gene for oncogenic miR-106b, which was identified as an induced miRNA in PCa. Further analysis revealed a loss of RBMS1 expression in prostate tumours compared to corresponding normal tissue. Overexpression of RBMS1 in DU145 and LNCaP prostate cancer cells resulted in diminished cell proliferation, colony forming ability as well as in retarded gap closing. Our results demonstrate for the first time a miR-106b dependent downregulation of RBMS1 in prostate carcinoma. Additionally, we show new tumour suppressive properties of RBMS1 whose observed loss may further elucidate the development of PCa.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Proliferation , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Prostatic Neoplasms/pathology , RNA-Binding Proteins/metabolism , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle , Cell Movement , DNA-Binding Proteins/genetics , Humans , Male , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , RNA-Binding Proteins/genetics , Tumor Cells, Cultured , Tumor Stem Cell Assay
7.
PLoS One ; 13(7): e0200472, 2018.
Article in English | MEDLINE | ID: mdl-30001402

ABSTRACT

Prostate carcinoma contain foci of neuroendocrine transdifferentiation, resulting in an increase of androgen-independent neuroendocrine-like (NE) tumor cells, whose number significantly correlates with tumor aggressiveness and thus lower survival rate. Neuroendocrine transdifferentiation of prostate cancer cells and a potential role of miRNAs within this process are poorly understood. MicroRNAs are small non-coding RNAs which post-transcriptionally regulate gene expression. The aim of this project was to identify new genes and miRNAs involved in neuroendocrine transdifferentiation. LNCaP prostate cancer cells were differentiated to NE-like cancer cells and microarray analyses were performed. Microarray results have been validated for the eight most deregulated mRNAs and microRNAs via qRT-PCR and analyzed with different algorithms to predict new targets for deregulated microRNAs. The induced CyclinD1 gene could be validated as new target gene for the repressed miR-17 family containing miR-17, miR-20a, miR-20b, miR-106a and miR-106b via reporter gene assays and Western Blot. Functional analysis of miR-17 family shows a high influence on cell proliferation, colony forming ability and apoptosis in LNCaP cells. Our data demonstrate wide changes in mRNA and microRNA expression during neuroendocrine transdifferentiation of LNCaP cells and confirm new mRNA-miRNA interactions with potential roles in NE-transdifferentiation of prostate carcinoma.


Subject(s)
Cell Transdifferentiation , Cyclin D1/metabolism , MicroRNAs/metabolism , Neuroendocrine Cells/metabolism , Prostatic Neoplasms/metabolism , RNA, Neoplasm/metabolism , Cell Line, Tumor , Cyclin D1/genetics , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Male , MicroRNAs/genetics , Neuroendocrine Cells/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Neoplasm/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...