Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 80(2): 189-203, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31744820

ABSTRACT

Oncogene activation and loss of tumor suppressor function changes the metabolic activity of cancer cells to drive unrestricted proliferation. Moreover, cancer cells adapt their metabolism to sustain growth and survival when access to oxygen and nutrients is restricted, such as in poorly vascularized tumor areas. We show here that p53-deficient colon cancer cells exposed to tumor-like metabolic stress in spheroid culture activated the mevalonate pathway to promote the synthesis of ubiquinone. This was essential to maintain mitochondrial electron transport for respiration and pyrimidine synthesis in metabolically compromised environments. Induction of mevalonate pathway enzyme expression in the absence of p53 was mediated by accumulation and stabilization of mature SREBP2. Mevalonate pathway inhibition by statins blocked pyrimidine nucleotide biosynthesis and induced oxidative stress and apoptosis in p53-deficient cancer cells in spheroid culture. Moreover, ubiquinone produced by the mevalonate pathway was essential for the growth of p53-deficient tumor organoids. In contrast, inhibition of intestinal hyperproliferation by statins in an Apc/KrasG12D-mutant mouse model was independent of de novo pyrimidine synthesis. Our results highlight the importance of the mevalonate pathway for maintaining mitochondrial electron transfer and biosynthetic activity in cancer cells exposed to metabolic stress. They also demonstrate that the metabolic output of this pathway depends on both genetic and environmental context. SIGNIFICANCE: These findings suggest that p53-deficient cancer cells activate the mevalonate pathway via SREBP2 and promote the synthesis of ubiquinone that plays an essential role in reducing oxidative stress and supports the synthesis of pyrimidine nucleotide.


Subject(s)
Mevalonic Acid/metabolism , Neoplasms/pathology , Pyrimidines/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Ubiquinone/analogs & derivatives , Animals , Apoptosis , Cell Line, Tumor , Cell Survival , Citric Acid Cycle/drug effects , Citric Acid Cycle/genetics , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Intestinal Mucosa/cytology , Intestinal Mucosa/pathology , Mice , Mice, Transgenic , Neoplasms/genetics , Neoplasms/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Stress, Physiological , Tumor Microenvironment/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquinone/metabolism , Xenograft Model Antitumor Assays
2.
Oncogene ; 37(40): 5435-5450, 2018 10.
Article in English | MEDLINE | ID: mdl-29872221

ABSTRACT

Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Here we investigated metabolic dependencies in a panel of ccRCC cell lines using nutrient depletion, functional RNAi screening and inhibitor treatment. We found that ccRCC cells are highly sensitive to the depletion of glutamine or cystine, two amino acids required for glutathione (GSH) synthesis. Moreover, silencing of enzymes of the GSH biosynthesis pathway or glutathione peroxidases, which depend on GSH for the removal of cellular hydroperoxides, selectively reduced viability of ccRCC cells but did not affect the growth of non-malignant renal epithelial cells. Inhibition of GSH synthesis triggered ferroptosis, an iron-dependent form of cell death associated with enhanced lipid peroxidation. VHL is a major tumour suppressor in ccRCC and loss of VHL leads to stabilisation of hypoxia inducible factors HIF-1α and HIF-2α. Restoration of functional VHL via exogenous expression of pVHL reverted ccRCC cells to an oxidative metabolism and rendered them insensitive to the induction of ferroptosis. VHL reconstituted cells also exhibited reduced lipid storage and higher expression of genes associated with oxidiative phosphorylation and fatty acid metabolism. Importantly, inhibition of ß-oxidation or mitochondrial ATP-synthesis restored ferroptosis sensitivity in VHL reconstituted cells. We also found that inhibition of GSH synthesis blocked tumour growth in a MYC-dependent mouse model of renal cancer. Together, our data suggest that reduced fatty acid metabolism due to inhibition of ß-oxidation renders renal cancer cells highly dependent on the GSH/GPX pathway to prevent lipid peroxidation and ferroptotic cell death.


Subject(s)
Carcinoma, Renal Cell/pathology , Cell Death , Glutathione/metabolism , Kidney Neoplasms/pathology , Lipid Metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation , Glutathione Peroxidase/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipid Peroxidation , Oxidation-Reduction
3.
Cancer Metab ; 4: 6, 2016.
Article in English | MEDLINE | ID: mdl-27042297

ABSTRACT

BACKGROUND: Enhanced macromolecule biosynthesis is integral to growth and proliferation of cancer cells. Lipid biosynthesis has been predicted to be an essential process in cancer cells. However, it is unclear which enzymes within this pathway offer the best selectivity for cancer cells and could be suitable therapeutic targets. RESULTS: Using functional genomics, we identified stearoyl-CoA desaturase (SCD), an enzyme that controls synthesis of unsaturated fatty acids, as essential in breast and prostate cancer cells. SCD inhibition altered cellular lipid composition and impeded cell viability in the absence of exogenous lipids. SCD inhibition also altered cardiolipin composition, leading to the release of cytochrome C and induction of apoptosis. Furthermore, SCD was required for the generation of poly-unsaturated lipids in cancer cells grown in spheroid cultures, which resemble those found in tumour tissue. We also found that SCD mRNA and protein expression is elevated in human breast cancers and predicts poor survival in high-grade tumours. Finally, silencing of SCD in prostate orthografts efficiently blocked tumour growth and significantly increased animal survival. CONCLUSIONS: Our data implicate lipid desaturation as an essential process for cancer cell survival and suggest that targeting SCD could efficiently limit tumour expansion, especially under the metabolically compromised conditions of the tumour microenvironment.

4.
J Pathol ; 237(2): 152-65, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25965974

ABSTRACT

Metabolic reprogramming in cancer enhances macromolecule biosynthesis and supports cell survival. Oncogenic drivers affect metabolism by altering distinct metabolic processes and render cancer cells sensitive to perturbations of the metabolic network. This study aimed to identify selective metabolic dependencies in breast cancer by investigating 17 breast cancer cells lines representative of the genetic diversity of the disease. Using a functional screen, we demonstrate here that monocarboxylate transporter 4 (MCT4) is an important regulator of breast cancer cell survival. MCT4 supports pH maintenance, lactate secretion and non-oxidative glucose metabolism in breast cancer cells. Moreover, MCT4 depletion caused an increased dependence of cancer cells on mitochondrial respiration and glutamine metabolism. MCT4 depletion reduced the ability of breast cancer cells to grow in a three-dimensional (3D) matrix or as multilayered spheroids. Moreover, MCT4 expression is regulated by the PI3K-Akt signalling pathway and highly expressed in HER2-positive breast cancers. These results suggest that MCT4 is a potential therapeutic target in defined breast cancer subtypes and reveal novel avenues for combination treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Energy Metabolism , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Animals , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation , Cell Survival , Coculture Techniques , Female , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Humans , Hydrogen-Ion Concentration , Lactic Acid/metabolism , MCF-7 Cells , Mice, Nude , Monocarboxylic Acid Transporters/genetics , Muscle Proteins/genetics , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Receptor, ErbB-2/metabolism , Signal Transduction , Spheroids, Cellular , Time Factors , Transfection , Tumor Burden
5.
Proc Natl Acad Sci U S A ; 108(45): 18500-5, 2011 Nov 08.
Article in English | MEDLINE | ID: mdl-22027011

ABSTRACT

Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca(2+)](i) increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca(2+) levels. This pathway involves the activation of Ca(2+)-permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca(2+) channels and ultimately increases myocyte Ca(2)(+)(i) levels. These observations reveal a dual role of the ANP/GC-A-signaling pathway in the regulation of cardiac myocyte Ca(2+)(i) homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca(2+)(i)-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca(2+)](i) might increase the propensity to cardiac hypertrophy and arrhythmias.


Subject(s)
Atrial Natriuretic Factor/metabolism , Cyclic GMP/metabolism , Guanylate Cyclase/metabolism , Myocardium/metabolism , Receptors, Atrial Natriuretic Factor/metabolism , Signal Transduction , Animals , Cell Line , Fluorescence Resonance Energy Transfer , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...