Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 448: 79-87, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25721859

ABSTRACT

An efficient one-step process to synthesize highly porous (Ca-alginate-SiO2-polycation) shell: (Na-alginate-SiO2) core hybrid beads for cell encapsulation, yielding a reusable long-life photosynthetically active material for a sustainable manufacture of high-value metabolites is presented. Bead formation is based on crosslinking of an alginate biopolymer and mineralisation of silicic acid in combination with a coacervation process between a polycation and the silica sol, forming a semi-permeable external membrane. The excellent mechanical strength and durability of the monodispersed beads and the control of their porosity and textural properties is achieved by tailoring the silica and alginate loading, polycation concentration and incubation time during coacervation. This process has led to the formation of a remarkably robust hybrid material that confers exceptional protection to live cells against sheer stresses and contamination in a diverse range of applications. Dunaliella tertiolecta encapsulated within this hybrid core-shell system display high photosynthetic activity over a long duration (>1 year). This sustainable biotechnology could find use in high value chemical harvests and biofuel cells to photosynthetic solar cells (energy transformation, electricity production, water splitting technologies). Furthermore the material can be engineered into various forms from spheres to variable thickness films, broadening its potential applications.


Subject(s)
Alginates/chemistry , Chlorophyta/physiology , Photosynthesis , Polyamines/chemistry , Silicon Dioxide/chemistry , Alginates/chemical synthesis , Cells, Immobilized/physiology , Glucuronic Acid/chemical synthesis , Glucuronic Acid/chemistry , Hexuronic Acids/chemical synthesis , Hexuronic Acids/chemistry , Photobioreactors , Polyamines/chemical synthesis , Polyelectrolytes , Porosity , Silicon Dioxide/chemical synthesis
2.
Mol Inform ; 32(7): 579-89, 2013 Jul.
Article in English | MEDLINE | ID: mdl-27481766

ABSTRACT

Early prediction of ADME properties such as the cytochrome P450 (CYP) mediated drug-drug interactions is an important challenge in the drug discovery area. In this study, we propose to couple an original data mining approach based on Rough Set Theory (RST) to a structural description of molecules. The latter was achieved by using two types of structural keys: (1) the MACCS keys and (2) a set of five in-house fingerprints based on properties of the electron density distributions of chemical groups. The compounds considered are involved in the inhibition of CYP1A2 and CYP2D6. RST allowed the extraction of rules further used as classifiers to predict the inhibitory profile of an independent set of molecules. The results reached prediction accuracies of 90.6 and 88.2 % for CYP1A2 and CYP2D6, respectively. In addition, these classifiers were analyzed to determine which structural fragments were most used for building the rules, revealing relationships between the occurrence of particular molecular fragments and CYP inhibition. The results assessed RST as a suitable tool to build strongly predictive models and infer structure-activity rules associated with potency.

3.
Chem Soc Rev ; 40(2): 860-85, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21212897

ABSTRACT

This critical review highlights the advances that have been made over recent years in the domain of whole-cell immobilisation and encapsulation for applications relating to the environment and human health, particularly focusing on examples of photosynthetic plant cells, bacteria and algae as well as animal cells. Evidence that encapsulated photosynthetic cells remain active in terms of CO(2) sequestration and biotransformation (solar driven conversion of CO(2) into biofuels, drugs, fine chemicals etc.), coupled with the most recent advances made in the field of cell therapy, reveals the need to develop novel devices based on the preservation of living cells within abiotic porous frameworks. This review shall corroborate this statement by selecting precise examples that unambiguously demonstrate the necessity and the benefits of such smart materials. As will be described, the handling and exploitation of photosynthetic cells are enhanced by entrapment or encapsulation since the cells are physically separated from the liquid medium, thereby facilitating the recovery of the metabolites produced. In the case of animal cells, their encapsulation within a matrix is essential in order to create a physical barrier that can protect the cells auto-immune defenders upon implantation into a living body. For these two research axes, the key parameters that have to be kept in mind when designing hybrid materials will be identified, concentrating on essential aspects such as biocompatibility, mechanical strength and controlled porosity (264 references).


Subject(s)
Cell Transplantation , Environmental Restoration and Remediation , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Cells, Immobilized , Conservation of Energy Resources , Humans , Hydrogen/chemistry , Hydrogen/metabolism , Photosynthesis , Polymers/chemistry , Regenerative Medicine , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...