Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Model ; 6: 820-831, 2021.
Article in English | MEDLINE | ID: mdl-34250320

ABSTRACT

The imposition and lifting of non-pharmaceutical interventions (NPIs) to avert the COVID-19 pandemic have gained popularity worldwide and will continue to be enforced until herd immunity is achieved. We developed a linear regression model to ascertain the nexus between the time-varying reproduction number averaged over a time window of six days (Rts) and seven NPIs: contact tracing, quarantine efforts, social distancing and health checks, hand hygiene, wearing of facemasks, lockdown and isolation, and health-related supports. Our analysis suggests that the second wave that emerged in Sri Lanka in early October 2020 continued despite numerous NPIs. The model indicates that the most effective single NPI was lockdown and isolation. Conversely, the least effective individual NPIs were hand hygiene and wearing of facemasks. The model also demonstrates that to mitigate the second wave to a satisfactory level (Rts<1), the best single NPI was the contact tracing with stringent imposition (% of improvement of Rts was 69.43 against the base case). By contrast, the best combination of two NPIs was the lockdown & isolation with health-related supports (% of improvement was 31.92 against the base case). As such, many health authorities worldwide can use this model to successfully strategize the imposition and lifting of NPIs for averting the COVID-19 pandemic.

2.
Molecules ; 25(20)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096660

ABSTRACT

Structural evolution in functional materials is a physicochemical phenomenon, which is important from a fundamental study point of view and for its applications in magnetism, catalysis, and nuclear waste immobilization. In this study, we used x-ray diffraction and Raman spectroscopy to examine the Gd2Hf2O7 (GHO) pyrochlore, and we showed that it underwent a thermally induced crystalline phase evolution. Superconducting quantum interference device measurements were carried out on both the weakly ordered pyrochlore and the fully ordered phases. These measurements suggest a weak magnetism for both pyrochlore phases. Spin density calculations showed that the Gd3+ ion has a major contribution to the fully ordered pyrochlore magnetic behavior and its cation antisite. The origin of the Gd magnetism is due to the concomitant shift of its spin-up 4f orbital states above the Fermi energy and its spin-down states below the Fermi energy. This picture is in contrast to the familiar Stoner model used in magnetism. The ordered pyrochlore GHO is antiferromagnetic, whereas its antisite is ferromagnetic. The localization of the Gd-4f orbitals is also indicative of weak magnetism. Chemical bonding was analyzed via overlap population calculations: These analyses indicate that Hf-Gd and Gd-O covalent interactions are destabilizing, and thus, the stabilities of these bonds are due to ionic interactions. Our combined experimental and computational analyses on the technologically important pyrochlore materials provide a basic understanding of their structure, bonding properties, and magnetic behaviors.


Subject(s)
Density Functional Theory , Gadolinium/chemistry , Hafnium/chemistry , Nanoparticles/chemistry , Oxygen/chemistry , Crystallography, X-Ray , Magnetic Phenomena , Models, Molecular , Molecular Structure
3.
ACS Appl Mater Interfaces ; 7(38): 21465-71, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26322519

ABSTRACT

Molecular imaging is very promising technique used for surgical guidance, which requires advancements related to properties of imaging agents and subsequent data retrieval methods from measured multispectral images. In this article, an upconversion material is introduced for subsurface near-infrared imaging and for the depth recovery of the material embedded below the biological tissue. The results confirm significant correlation between the analytical depth estimate of the material under the tissue and the measured ratio of emitted light from the material at two different wavelengths. Experiments with biological tissue samples demonstrate depth resolved imaging using the rare earth doped multifunctional phosphors. In vitro tests reveal no significant toxicity, whereas the magnetic measurements of the phosphors show that the particles are suitable as magnetic resonance imaging agents. The confocal imaging of fibroblast cells with these phosphors reveals their potential for in vivo imaging. The depth-resolved imaging technique with such phosphors has broad implications for real-time intraoperative surgical guidance.


Subject(s)
Diagnostic Imaging/methods , Luminescence , Magnetic Phenomena , Animals , Chickens , Female , Imaging, Three-Dimensional , Mammary Glands, Animal/anatomy & histology , Microscopy, Confocal , Microscopy, Electron, Scanning , Particle Size , X-Ray Diffraction
4.
ACS Appl Mater Interfaces ; 7(11): 6014-8, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25761738

ABSTRACT

This work demonstrates that a nonmagnetic thin film of cobalt oxide (CoO) sandwiched between Ta seed and capping layers can be effectively reduced to a magnetic cobalt thin film by annealing at 200 °C, whereas CoO does not exhibit ferromagnetic properties at room temperature and is stable at up to ∼400 °C. The CoO reduction is attributed to the thermodynamically driven gettering of oxygen by tantalum, similar to the exothermic reduction-oxidation reaction observed in thermite systems. Similarly, annealing at 200 °C of a nonmagnetic [CoO/Pd]N multilayer thin film sandwiched between Ta seed and Ta capping layers results in the conversion into a magnetic [Co/Pd]N multilayer, a material with perpendicular magnetic anisotropy that is of interest for magnetic data storage applications. A nanopatterning approach is introduced where [CoO/Pd]N multilayers is locally reduced into [Co/Pd]N multilayers to achieve perpendicular magnetic anisotropy nanostructured array. This technique can potentially be adapted to nanoscale patterning of other systems for which thermodynamically favorable combination of oxide and gettering layers can be identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...