Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 61: 116740, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35396128

ABSTRACT

Human African trypanosomiasis is caused by a protozoan parasite Trypanosoma brucei majorly infecting people living in sub-Saharan Africa. Current limited available treatments suffer from drug resistance, severe adverse effects, low efficacy, and costly administrative procedures in African countries with limited medical resources. Therefore, there is always a perpetual demand for advanced drug development and invention of new strategies to combat the disease. Previous work in our lab generated a library of sulfonamide analogs as selective tubulin inhibitors, based on the structural difference between mammalian and trypanosome tubulin proteins. Further lead derivatization was performed in the current study and generated 25 potential drug candidates to improve the drug efficacy and uptake by selectively targeting the parasite's P2 membrane transporter protein with imidamide moiety. One of the newly synthesized analogs, compound 25 with a di-imidamide moiety, has shown greater potency with an IC50 of 1 nM to selectively inhibit the growth of trypanosome cells without affecting the viability of mammalian cells. Western blot analyses reveal that the compound suppressed tubulin polymerization in T. brucei cells. A detailed structure-activity relationship (SAR) was summarized that will be used to guide future lead optimization.


Subject(s)
Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Mammals/metabolism , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Tubulin/metabolism , Tubulin Modulators/pharmacology
2.
Biomed Chromatogr ; 36(3): e5310, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34981554

ABSTRACT

Previously compound I showed great anti-glioblastoma activity without toxicity in a mouse xenograft study. In this study, a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated to investigate the pharmacokinetics and brain distribution of compound I in mice. The protein precipitation method was applied to extract the compound from mouse plasma and brain homogenates, and it was then separated using a Kinetex C18 column with a mobile phase consisting of acetonitrile-0.1% formic acid water (50:50, v/v). The analytes were detected with multiple reaction monitoring for the quantitative response of the compounds. The inter- and intra-day precisions were <8.29 and 3.85%, respectively, and the accuracy range was within ±7.33%. The method was successfully applied to evaluate the pharmacokinetics of compound I in mouse plasma and brain tissue. The peak concentration in plasma was achieved within 1 h. The apparent elimination half-life was 4.06 h. The peak concentration of compound I in brain tissue was 0.88 µg/g. The results indicated that compound I was rapidly distributed and could cross the blood-brain barrier. The pharmacokinetic profile summarized provides valuable information for the further investigation of compound I as a potential anti-glioblastoma agent.


Subject(s)
Blood-Brain Barrier , Tandem Mass Spectrometry , Administration, Oral , Animals , Chromatography, High Pressure Liquid/methods , Humans , Mice , Reproducibility of Results , Tandem Mass Spectrometry/methods
3.
Biomed Chromatogr ; 35(10): e5169, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33978959

ABSTRACT

Previously compound 12 showed great anti-trypanosome activity without toxicity in an in vivo study. In the current study, a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated to investigate its pharmacokinetics in mouse plasma. A protein precipitation method was applied to extract the compound, and it was then separated using a Kinetex C18 column with mobile phase consisting of acetonitrile-0.1% formic acid water (50:50, v/v) at a flow rate of 300 µl/min. The analytes were detected with the multiple reaction monitoring in negative electrospray ionization source for quantitative response of the compounds. Compound 12 was detected at m/z 477.0 → 367.2, while the internal standard compound 14 was detected at m/z 499.2 → 268.2. Inter- and intra-day precision was <5.22 and 2.79% respectively, while the accuracy range was within ±9.65%. The method was successfully applied to evaluate the pharmacokinetics of compound 12 in mouse plasma with two formulations (20% Cremophor EL or sesame oil) and drug administration routes (oral and intraperitoneal injection). We observed a better drug serum concentration with the Cremophor formulation, and the two different drug administration routes did not show significant differences from the drug distribution.


Subject(s)
Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Trypanocidal Agents , Administration, Oral , Animals , Glycerol/analogs & derivatives , Injections, Intraperitoneal , Linear Models , Male , Mice , Reproducibility of Results , Sensitivity and Specificity , Sesame Oil , Trypanocidal Agents/administration & dosage , Trypanocidal Agents/blood , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...