Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 32(15): 6676-6684, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32952296

ABSTRACT

Alternatives to lead- and tin-based perovskites for photovoltaics and optoelectronics are sought that do not suffer from the disadvantages of toxicity and low device efficiency of present-day materials. Here we report a study of the double perovskite Cs2TeI6, which we have synthesized in the thin film form for the first time. Exhaustive trials concluded that spin coating CsI and TeI4 using an antisolvent method produced uniform films, confirmed as Cs2TeI6 by XRD with Rietveld analysis. They were stable up to 250 °C and had an optical band gap of ∼1.5 eV, absorption coefficients of ∼6 × 104 cm-1, carrier lifetimes of ∼2.6 ns (unpassivated 200 nm film), a work function of 4.95 eV, and a p-type surface conductivity. Vibrational modes probed by Raman and FTIR spectroscopy showed resonances qualitatively consistent with DFT Phonopy-calculated spectra, offering another route for phase confirmation. It was concluded that the material is a candidate for further study as a potential optoelectronic or photovoltaic material.

2.
Opt Lett ; 45(16): 4618-4621, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32797024

ABSTRACT

Energy transfer from a submonolayer of rhodamine 6G molecules to a 130 nm thick crystalline silicon (Si) waveguide is investigated. The dependence of the fluorescence lifetime of rhodamine on its distance to the Si waveguide is characterized and modeled successfully by a classical dipole model. The energy transfer process could be regarded as photon tunneling into the Si waveguide via the evanescent waves. The experimentally observed tunneling rate is well described by an analytical expression obtained via a complex variable analysis in the complex wavenumber plane.

3.
Faraday Discuss ; 222(0): 405-423, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32115600

ABSTRACT

Silicon photosensitisation via energy transfer from molecular dye layers is a promising area of research for excitonic silicon photovoltaics. We present the synthesis and photophysical characterisation of vinyl and allyl terminated Si(111) surfaces decorated with perylene molecules. The functionalised silicon surfaces together with Langmuir-Blodgett (LB) films based on perylene derivatives were studied using a wide range of steady-state and time resolved spectroscopic techniques. Fluorescence lifetime quenching experiments performed on the perylene modified monolayers revealed energy transfer efficiencies to silicon of up to 90 per cent. We present a simple model to account for the near field interaction of a dipole emitter with the silicon surface and distinguish between the 'true' FRET region (<5 nm) and a different process, photon tunnelling, occurring for distances between 10-50 nm. The requirements for a future ultra-thin crystalline solar cell paradigm include efficient surface passivation and keeping a close distance between the emitter dipole and the surface. These are discussed in the context of existing limitations and questions raised about the finer details of the emitter-silicon interaction.

4.
Chem Commun (Camb) ; 53(89): 12120-12123, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29075709

ABSTRACT

We report the photosensitization of crystalline silicon via energy transfer using covalently attached protoporphyrin IX (PpIX) derivative molecules at different distances via changing the diol linker to the surface. The diol linker molecule chain length was varied from 2 carbon to 10 carbon lengths in order to change the distance of PpIX to the Si(111) surface between 6 Å and 18 Å. Fluorescence quenching as a function of the PpIX-Si surface distance showed a decrease in the fluorescence lifetime by almost two orders of magnitude at the closest separation. The experimental fluorescence lifetimes are explained theoretically by a classical Chance-Prock-Silbey model. At a separation below 2 nm, we observe for the first time, a Förster-like dipole-dipole energy transfer with a characteristic distance of R0 = 2.7 nm.

5.
Opt Express ; 23(24): A1528-32, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698800

ABSTRACT

We demonstrate the direct excitation of a single TE mode in 25 nm thick planar crystalline silicon waveguide by photon tunneling from a layer of fluorescent dye molecules deposited by the Langmuir-Blodgett technique. The observed photon tunneling rate as a function of the dye-silicon separation is well fitted by a theoretical tunneling rate, which is obtained via a novel approach within the framework of quantum mechanics. We suggest that future ultrathin crystalline silicon solar cells can be made efficient by simple light trapping structures consisting of molecules on silicon.

6.
Langmuir ; 28(50): 17419-25, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23205901

ABSTRACT

The radiative energy transfer from rare earth fluoride upconverting (UC) Na(x)Li(y)YF(4):Yb(3+),Er(3+) nanoparticles to rhodamine dyes has been systematically studied in colloidal solutions at room temperature. The UC emission bands at 520 and 550 nm have been shifted to the longer-wavelength (ca. 600 nm) region suitable for biomedical applications. To decrease the optical length between the upconverting emitter and the fluorophore, the UC nanoparticles were decorated with titanate nanotubes coated with a dense layer of dye molecules providing possible resonance-energy transfer between them. The fabricated nanostructured composite shows efficient harvesting of UC emission within the proximity of the nanoparticles, allowing the local generation of light suitable for photodynamic therapy applications.


Subject(s)
Metal Nanoparticles/chemistry , Metals, Rare Earth/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...