Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 1945: 271-296, 2019.
Article in English | MEDLINE | ID: mdl-30945252

ABSTRACT

The chapter reviews the syntax to store machine-readable annotations and describes the mapping between rule-based modelling entities (e.g., agents and rules) and these annotations. In particular, we review an annotation framework and the associated guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages, and present prototypes that can be used to extract and query the annotations. An ontology is used to annotate models and facilitate their description.


Subject(s)
Data Curation/methods , Models, Biological , Software , Humans , Internet
2.
ACS Synth Biol ; 7(12): 2812-2823, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30408409

ABSTRACT

A central strategy of synthetic biology is to understand the basic processes of living creatures through engineering organisms using the same building blocks. Biological machines described in terms of parts can be studied by computer simulation in any of several languages or robotically assembled in vitro. In this paper we present a language, the Genetic Circuit Description Language (GCDL) and a compiler, the Genetic Circuit Compiler (GCC). This language describes genetic circuits at a level of granularity appropriate both for automated assembly in the laboratory and deriving simulation code. The GCDL follows Semantic Web practice, and the compiler makes novel use of the logical inference facilities that are therefore available. We present the GCDL and compiler structure as a study of a tool for generating κ-language simulations from semantic descriptions of genetic circuits.


Subject(s)
Gene Regulatory Networks , Synthetic Biology/methods , Programming Languages , Semantics
3.
Nat Commun ; 9(1): 4528, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375377

ABSTRACT

Growth impacts a range of phenotypic responses. Identifying the sources of growth variation and their propagation across the cellular machinery can thus unravel mechanisms that underpin cell decisions. We present a stochastic cell model linking gene expression, metabolism and replication to predict growth dynamics in single bacterial cells. Alongside we provide a theory to analyse stochastic chemical reactions coupled with cell divisions, enabling efficient parameter estimation, sensitivity analysis and hypothesis testing. The cell model recovers population-averaged data on growth-dependence of bacterial physiology and how growth variations in single cells change across conditions. We identify processes responsible for this variation and reconstruct the propagation of initial fluctuations to growth and other processes. Finally, we study drug-nutrient interactions and find that antibiotics can both enhance and suppress growth heterogeneity. Our results provide a predictive framework to integrate heterogeneous data and draw testable predictions with implications for antibiotic tolerance, evolutionary and synthetic biology.


Subject(s)
Bacteria/growth & development , Cell Division/physiology , Cell Enlargement , Gene Expression , Bacteria/genetics , Bacteria/metabolism , Models, Biological , Stochastic Processes
4.
Sci Rep ; 6: 30845, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27492876

ABSTRACT

The sustainability of biological, social, economic and ecological communities is often determined by the outcome of social conflicts between cooperative and selfish individuals (cheaters). Cheaters avoid the cost of contributing to the community and can occasionally spread in the population leading to the complete collapse of cooperation. Although such collapse often unfolds unexpectedly, it is unclear whether one can detect the risk of cheater's invasions and loss of cooperation in an evolving community. Here, we combine dynamical networks and evolutionary game theory to study the abrupt loss of cooperation with tools for studying critical transitions. We estimate the risk of cooperation collapse following the introduction of a single cheater under gradually changing conditions. We observe an increase in the average time it takes for cheaters to be eliminated from the community as the risk of collapse increases. We argue that such slow system response resembles slowing down in recovery rates prior to a critical transition. In addition, we show how changes in community structure reflect the risk of cooperation collapse. We find that these changes strongly depend on the mechanism that governs how cheaters evolve in the community. Our results highlight novel directions for detecting abrupt transitions in evolving networks.


Subject(s)
Cooperative Behavior , Models, Theoretical , Area Under Curve , Game Theory , Humans , ROC Curve
5.
Bioinformatics ; 32(6): 908-17, 2016 03 15.
Article in English | MEDLINE | ID: mdl-26559508

ABSTRACT

MOTIVATION: Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. RESULTS: We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general. AVAILABILITY AND IMPLEMENTATION: The annotation ontology for rule-based models can be found at http://purl.org/rbm/rbmo The krdf tool and associated executable examples are available at http://purl.org/rbm/rbmo/krdf CONTACT: anil.wipat@newcastle.ac.uk or vdanos@inf.ed.ac.uk.


Subject(s)
Semantics , Models, Theoretical
6.
Proc Natl Acad Sci U S A ; 112(34): E4735-42, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26261330

ABSTRACT

Understanding molecular mechanisms in the context of living cells requires the development of new methods of in vivo biochemical analysis to complement established in vitro biochemistry. A critically important molecular mechanism is genetic recombination, required for the beneficial reassortment of genetic information and for DNA double-strand break repair (DSBR). Central to recombination is the RecA (Rad51) protein that assembles into a spiral filament on DNA and mediates genetic exchange. Here we have developed a method that combines chromatin immunoprecipitation with next-generation sequencing (ChIP-Seq) and mathematical modeling to quantify RecA protein binding during the active repair of a single DSB in the chromosome of Escherichia coli. We have used quantitative genomic analysis to infer the key in vivo molecular parameters governing RecA loading by the helicase/nuclease RecBCD at recombination hot-spots, known as Chi. Our genomic analysis has also revealed that DSBR at the lacZ locus causes a second RecBCD-mediated DSBR event to occur in the terminus region of the chromosome, over 1 Mb away.


Subject(s)
DNA Damage , DNA Repair , Exodeoxyribonuclease V/metabolism , Genome , Rec A Recombinases/metabolism , Chromatin Immunoprecipitation , Rec A Recombinases/genetics
7.
Proc Natl Acad Sci U S A ; 112(9): E1038-47, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25695966

ABSTRACT

Intracellular processes rarely work in isolation but continually interact with the rest of the cell. In microbes, for example, we now know that gene expression across the whole genome typically changes with growth rate. The mechanisms driving such global regulation, however, are not well understood. Here we consider three trade-offs that, because of limitations in levels of cellular energy, free ribosomes, and proteins, are faced by all living cells and we construct a mechanistic model that comprises these trade-offs. Our model couples gene expression with growth rate and growth rate with a growing population of cells. We show that the model recovers Monod's law for the growth of microbes and two other empirical relationships connecting growth rate to the mass fraction of ribosomes. Further, we can explain growth-related effects in dosage compensation by paralogs and predict host-circuit interactions in synthetic biology. Simulating competitions between strains, we find that the regulation of metabolic pathways may have evolved not to match expression of enzymes to levels of extracellular substrates in changing environments but rather to balance a trade-off between exploiting one type of nutrient over another. Although coarse-grained, the trade-offs that the model embodies are fundamental, and, as such, our modeling framework has potentially wide application, including in both biotechnology and medicine.


Subject(s)
Bacteria/metabolism , Bacterial Physiological Phenomena , Cell Proliferation/physiology , Gene Expression Regulation, Bacterial/physiology , Models, Biological
8.
Methods Mol Biol ; 1244: 105-35, 2015.
Article in English | MEDLINE | ID: mdl-25487095

ABSTRACT

Rule-based modeling, an alternative to traditional reaction-based modeling, allows us to intuitively specify biological interactions while abstracting from the underlying combinatorial complexity. One such rule-based modeling formalism is Kappa, which we introduce to readers in this chapter. We discuss the application of Kappa to three modeling scenarios in synthetic biology: a unidirectional switch based on nitrosylase induction in Saccharomyces cerevisiae, the repressilator in Escherichia coli formed from BioBrick parts, and a light-mediated extension to said repressilator developed by the University of Edinburgh team during iGEM 2010. The second and third scenarios in particular form a case-based introduction to the Kappa BioBrick Framework, allowing us to systematically address the modeling of devices and circuits based on BioBrick parts in Kappa. Through the use of these examples, we highlight the ease with which Kappa can model biological interactions both at the genetic and the protein-protein interaction level, resulting in detailed stochastic models accounting naturally for transcriptional and translational resource usage. We also hope to impart the intuitively modular nature of the modeling processes involved, supported by the introduction of visual representations of Kappa models. Concluding, we explore future endeavors aimed at making modeling of synthetic biology more user-friendly and accessible, taking advantage of the strengths of rule-based modeling in Kappa.


Subject(s)
Models, Theoretical , Synthetic Biology/methods , Escherichia coli , Saccharomyces cerevisiae
9.
Bioinformatics ; 29(23): 3105-6, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24021382

ABSTRACT

Spatial Kappa is a simulator of models written in a variant of the rule-based stochastic modelling language Kappa, with spatial extensions.


Subject(s)
Computer Simulation , Models, Theoretical , Programming Languages , Diffusion , Humans , Receptors, AMPA/metabolism , Synaptic Membranes/metabolism
10.
PLoS One ; 7(3): e32032, 2012.
Article in English | MEDLINE | ID: mdl-22412851

ABSTRACT

The assembly of molecular machines and transient signaling complexes does not typically occur under circumstances in which the appropriate proteins are isolated from all others present in the cell. Rather, assembly must proceed in the context of large-scale protein-protein interaction (PPI) networks that are characterized both by conflict and combinatorial complexity. Conflict refers to the fact that protein interfaces can often bind many different partners in a mutually exclusive way, while combinatorial complexity refers to the explosion in the number of distinct complexes that can be formed by a network of binding possibilities. Using computational models, we explore the consequences of these characteristics for the global dynamics of a PPI network based on highly curated yeast two-hybrid data. The limited molecular context represented in this data-type translates formally into an assumption of independent binding sites for each protein. The challenge of avoiding the explicit enumeration of the astronomically many possibilities for complex formation is met by a rule-based approach to kinetic modeling. Despite imposing global biophysical constraints, we find that initially identical simulations rapidly diverge in the space of molecular possibilities, eventually sampling disjoint sets of large complexes. We refer to this phenomenon as "compositional drift". Since interaction data in PPI networks lack detailed information about geometric and biological constraints, our study does not represent a quantitative description of cellular dynamics. Rather, our work brings to light a fundamental problem (the control of compositional drift) that must be solved by mechanisms of assembly in the context of large networks. In cases where drift is not (or cannot be) completely controlled by the cell, this phenomenon could constitute a novel source of phenotypic heterogeneity in cell populations.


Subject(s)
Protein Interaction Mapping/methods , Proteins/metabolism , Algorithms , Computer Simulation , Kinetics , Models, Biological , Protein Binding , Protein Multimerization , Proteomics/methods
11.
Chaos ; 20(3): 037108, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20887074

ABSTRACT

Many proteins are composed of structural and chemical features--"sites" for short--characterized by definite interaction capabilities, such as noncovalent binding or covalent modification of other proteins. This modularity allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity that shapes most biological networks, such as mammalian signaling systems, and effectively prevents their study in terms of kinetic equations-unless the complexity is radically trimmed. Yet, if combinatorial complexity is key to the system's behavior, eliminating it will prevent, not facilitate, understanding. A more adequate representation of a combinatorial system is provided by a graph-based framework of rewrite rules where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions, which deal with molecular species, rules deal with patterns, i.e., multisets of molecular species. Although the stochastic dynamics induced by a collection of rules on a mixture of molecules can be simulated, it appears useful to capture the system's average or deterministic behavior by means of differential equations. However, expansion of the rules into kinetic equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules describe bona fide patterns of interaction, molecular species are unlikely to constitute appropriate units of dynamics. Rather, we must seek aggregate variables reflective of the causal structure laid down by the rules. We call these variables "fragments" and the process of identifying them "fragmentation." Ideally, fragments are aspects of the system's microscopic population that the set of rules can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this. Most importantly, fragments are self-consistent descriptors of system dynamics in that their time-evolution is governed by a closed system of kinetic equations. Taken together, fragments are endogenous distinctions that matter for the dynamics of a system, which warrants viewing them as the carriers of information. Although fragments can be thought of as multisets of molecular species (an extensional view), their self-consistency suggests treating them as autonomous aspects cut off from their microscopic realization (an intensional view). Fragmentation is a seeded process that depends on the choice of observables whose dynamics one insists to describe. Different observables can cause distinct fragmentations, in effect altering the set of information carriers that govern the behavior of a system, even though nothing has changed in its microscopic constitution. In this contribution, we present a mathematical specification of fragments, but not an algorithmic implementation. We have described the latter elsewhere in rather technical terms that, although effective, were lacking an embedding into a more general conceptual framework, which we here provide.


Subject(s)
Models, Biological , Proteins/metabolism , Programming Languages , Protein Binding
12.
Proc Natl Acad Sci U S A ; 106(16): 6453-8, 2009 Apr 21.
Article in English | MEDLINE | ID: mdl-19346467

ABSTRACT

Modelers of molecular signaling networks must cope with the combinatorial explosion of protein states generated by posttranslational modifications and complex formation. Rule-based models provide a powerful alternative to approaches that require explicit enumeration of all possible molecular species of a system. Such models consist of formal rules stipulating the (partial) contexts wherein specific protein-protein interactions occur. These contexts specify molecular patterns that are usually less detailed than molecular species. Yet, the execution of rule-based dynamics requires stochastic simulation, which can be very costly. It thus appears desirable to convert a rule-based model into a reduced system of differential equations by exploiting the granularity at which rules specify interactions. We present a formal (and automated) method for constructing a coarse-grained and self-consistent dynamical system aimed at molecular patterns that are distinguishable by the dynamics of the original system as posited by the rules. The method is formally sound and never requires the execution of the rule-based model. The coarse-grained variables do not depend on the values of the rate constants appearing in the rules, and typically form a system of greatly reduced dimension that can be amenable to numerical integration and further model reduction techniques.


Subject(s)
Models, Biological , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...