Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 942: 173628, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38848924

ABSTRACT

Air quality (AQ) significantly impacts human health, influenced by both natural phenomena and human activities. In 2021, heightened awareness of AQ's health impacts prompted the revision of the World Health Organization (WHO) guidelines, advocating for stricter pollution standards. However, research on AQ has predominantly focused on high-income countries and densely populated cities, neglecting low- and middle-income countries, particularly Pacific Island Countries, Territories, and States (PICTS). This systematic review compiles existing peer-reviewed literature on AQ research in PICTS to assess the current state of knowledge and emphasize the need for further investigation. A systematic literature search yielded 40 papers from databases including Web of Science, Scopus, and Embase. Among the 26 PICTS, only 6 (Hawai'i, Fiji, Papua New Guinea, New Caledonia, Republic of Marshall Islands, and Pacific) have been subject to AQ-related research, with 4 considering the World Health Organization (WHO) parameters and 26 addressing non-WHO parameters. Analysis reveals AQ parameters often exceed 2021 WHO guidelines for PM2.5, PM10, SO2, and CO, raising concerns among regional governments. Studies primarily focused on urban, agricultural, rural, and open ocean areas, with 15 based on primary data and 14 on both primary and secondary sources. Research interests and funding sources dictated the methods used, with a predominant focus on environmental risks over social, economic, and technological impacts. Although some papers addressed health implications, further efforts are needed in this area. This review underscores the urgent need for ongoing AQ monitoring efforts in PICTS to generate spatially and temporally comparable data. By presenting the current state of AQ knowledge, this work lays the foundation for coordinated regional monitoring and informs national policy development.


Subject(s)
Air Pollution , Humans , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Environmental Health , Environmental Monitoring/methods , Pacific Islands , World Health Organization
2.
Sci Total Environ ; 829: 154562, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35306076

ABSTRACT

Ocean-based photosynthesis accounts for half of global primary production. Productivity rates, driven by phytoplanktonic responses to nutrient availability, are however highly variable both spatially and temporally throughout the oceans. Intense primary production in the ocean's most productive areas, the Eastern Boundary Upwelling Systems (EBUS), cannot be fully explained by nutrient upwelling alone, with the role of local dust sources and complimentary aeolian nutrient delivery largely overlooked. Here we explore relationships between iron-rich dust plumes emanating from a significant regional dust source, Namibia's ephemeral river valleys, and blooms of phytoplankton growth off southwest Africa in the Benguela Upwelling System (BUS). We constrain dust source dynamics through field measurement of in-valley airborne dust concentrations made at daily resolution, and couple these with satellite observations of atmospheric aerosols, ocean phytoplankton concentrations, and sea surface temperature over a six-month period encompassing the known 'dust season' of the valley sources. Phytoplanktonic responses in BUS waters to individual dust emission events were identified and were importantly shown to be unassociated with upwelling events. We demonstrate a fast (1-2 day) chlorophyllic response to observed iron-rich dust emissions, a relationship that is concealed by monthly averaged data. We show that terrestrial in-valley airborne dust concentrations correlate with offshore increases in phytoplankton concentrations, providing the first study of oceanic response that is directly linked with a specific monitored terrestrial dust source.


Subject(s)
Dust , Phytoplankton , Dust/analysis , Iron , Minerals , Namibia , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...