Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 208(1): 54-62, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34853078

ABSTRACT

In people with HIV (PWH) on antiretroviral therapy (ART), immune dysfunction persists, including elevated expression of immune checkpoint (IC) proteins on total and HIV-specific T cells. Reversing immune exhaustion is one strategy to enhance the elimination of HIV-infected cells that persist in PWH on ART. We aimed to evaluate whether blocking CTL-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), T cell Ig domain and mucin domain 3 (TIM-3), T cell Ig and ITIM domain (TIGIT) and lymphocyte activation gene-3 (LAG-3) alone or in combination would enhance HIV-specific CD4+ and CD8+ T cell function ex vivo. Intracellular cytokine staining was performed using human PBMCs from PWH on ART (n = 11) and expression of CD107a, IFN-γ, TNF-α, and IL-2 was quantified with HIV peptides and Abs to IC. We found the following: 1) IC blockade enhanced the induction of CD107a and IL-2 but not IFN-γ and TNF-α in response to Gag and Nef peptides; 2) the induction of CD107a and IL-2 was greatest with multiple combinations of two Abs; and 3) Abs to LAG-3, CTLA-4, and TIGIT in combinations showed synergistic induction of IL-2 in HIV-specific CD8+ and CD107a and IL-2 production in HIV-specific CD4+ and CD8+ T cells. These results demonstrate that the combination of Abs to LAG-3, CTLA-4, or TIGIT can increase the frequency of cells expressing CD107a and IL-2 that associated with cytotoxicity and survival of HIV-specific CD4+ and CD8+ T cells in PWH on ART. These combinations should be further explored for an HIV cure.


Subject(s)
Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/drug therapy , HIV-1/physiology , Immune Checkpoint Inhibitors/therapeutic use , Adult , Antigens, CD/immunology , Antigens, Viral/immunology , CTLA-4 Antigen/immunology , Cells, Cultured , Drug Synergism , Drug Therapy, Combination , HIV Infections/immunology , HIV Long-Term Survivors , Humans , Interleukin-1/metabolism , Lymphocyte Activation , Lysosomal-Associated Membrane Protein 1/metabolism , Male , Middle Aged , Receptors, Immunologic/immunology , T-Cell Antigen Receptor Specificity , Lymphocyte Activation Gene 3 Protein
2.
PLoS Pathog ; 16(2): e1008151, 2020 02.
Article in English | MEDLINE | ID: mdl-32109259

ABSTRACT

HIV latency is the major barrier to a cure for people living with HIV (PLWH) on antiretroviral therapy (ART) because the virus persists in long-lived non-proliferating and proliferating latently infected CD4+ T cells. Latently infected CD4+ T cells do not express viral proteins and are therefore not visible to immune mediated clearance. Therefore, identifying interventions that can reverse latency and also enhance immune mediated clearance is of high interest. Interferons (IFNs) have multiple immune enhancing effects and can inhibit HIV replication in activated CD4+ T cells. However, the effects of IFNs on the establishment and reversal of HIV latency is not understood. Using an in vitro model of latency, we demonstrated that plasmacytoid dendritic cells (pDC) inhibit the establishment of HIV latency through secretion of type I IFNα, IFNß and IFNω but not IFNε or type III IFNλ1 and IFNλ3. However, once latency was established, IFNα but no other IFNs were able to efficiently reverse latency in both an in vitro model of latency and CD4+ T cells collected from PLWH on suppressive ART. Binding of IFNα to its receptor expressed on primary CD4+ T cells did not induce activation of the canonical or non-canonical NFκB pathway but did induce phosphorylation of STAT1, 3 and 5 proteins. STAT5 has been previously demonstrated to bind to the HIV long terminal repeat and activate HIV transcription. We demonstrate diverse effects of interferons on HIV latency with type I IFNα; inhibiting the establishment of latency but also reversing HIV latency once latency is established.


Subject(s)
CD4-Positive T-Lymphocytes , HIV Long Terminal Repeat/immunology , HIV-1/physiology , Interferon-alpha/immunology , Transcription, Genetic/immunology , Virus Latency/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , Dendritic Cells/immunology , Dendritic Cells/pathology , Dendritic Cells/virology , HEK293 Cells , Humans , NF-kappa B/immunology , STAT Transcription Factors/immunology
3.
J Immunol ; 204(5): 1242-1254, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31988180

ABSTRACT

In people living with HIV on antiretroviral therapy, HIV latency is the major barrier to a cure. HIV persists preferentially in CD4+ T cells expressing multiple immune checkpoint (IC) molecules, including programmed death (PD)-1, T cell Ig and mucin domain-containing protein 3 (TIM-3), lymphocyte associated gene 3 (LAG-3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT). We aimed to determine whether these and other IC molecules have a functional role in maintaining HIV latency and whether blocking IC molecules with Abs reverses HIV latency. Using an in vitro model that establishes latency in both nonproliferating and proliferating human CD4+ T cells, we show that proliferating cells express multiple IC molecules at high levels. Latent infection was enriched in proliferating cells expressing PD-1. In contrast, nonproliferating cells expressed IC molecules at significantly lower levels, but latent infection was enriched in cells expressing PD-1, TIM-3, CTL-associated protein 4 (CTLA-4), or B and T lymphocyte attenuator (BTLA). In the presence of an additional T cell-activating stimulus, staphylococcal enterotoxin B, Abs to CTLA-4 and PD-1 reversed HIV latency in proliferating and nonproliferating CD4+ T cells, respectively. In the absence of staphylococcal enterotoxin B, only the combination of Abs to PD-1, CTLA-4, TIM-3, and TIGIT reversed latency. The potency of latency reversal was significantly higher following combination IC blockade compared with other latency-reversing agents, including vorinostat and bryostatin. Combination IC blockade should be further explored as a strategy to reverse HIV latency.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/pharmacology , CD4-Positive T-Lymphocytes , Cell Proliferation/drug effects , Enterotoxins/pharmacology , HIV-1/physiology , Models, Immunological , Virus Latency , Antigens, CD/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , Female , HEK293 Cells , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Hepatitis A Virus Cellular Receptor 2/immunology , Humans , Lymphocyte Activation/drug effects , Male , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Virus Latency/drug effects , Virus Latency/immunology , Lymphocyte Activation Gene 3 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...