Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Metabolites ; 14(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38668369

ABSTRACT

The exogenous application of bioregulators, such as salicylic acid (SA), has exhibited promising outcomes in alleviating drought stress. Nevertheless, its impact on culantro (Eryngium foetidum L.) remains unexplored. Thus, the aim of this study was to assess how SA impacts the growth, morphophysiology, and essential oil composition of culantro when subjected to drought. To achieve this, culantro plants were grown under three different watering regimes: well-watered, drought-stressed, and re-watered. Additionally, they were either treated with SA (100 µM) or left untreated, with water serving as the control. SA application did not mitigate the effects of drought in biomass production but increased biomass, leaf number, leaf area, and photosynthetic pigments under well-irrigated and re-watered conditions. After a drought period followed by re-watering, plants recovered membrane integrity independently of SA application. Water stress and the exogenous application of SA also modulated the profile of essential oils. This is the first report about SA and drought affecting growth and essential oil composition in culantro.

2.
Physiol Mol Biol Plants ; 29(4): 579-590, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37187775

ABSTRACT

Drought is the major abiotic stress limiting crop production worldwide, with drought events being expected to be harsher and more frequent due to the global warming. In this context, the development of strategies to mitigate the deleterious effects of drought, such as the use of biostimulants, is imperative. Radish is a globally cultivated root vegetable, with high nutritional and phytochemical value. Thus, this study aimed to evaluate the potential of exogenous carnitine application in the mitigation of drought stress on radish morphophysiology. For this, radish plants were grown for 30 days, being irrigated with 80% (well-watered) or 15% (drought stress) of water holding capacity and sprayed with carnitine (5, 50, and 500 µM) or water (0 µM-no carnitine). The experimental design was completely randomized, in a 4 × 2 factorial scheme (carnitine concentrations × water conditions) with six replicates, and each experimental unit consisted of one plant. The gas exchanges, chlorophyll a fluorescence, photosynthetic pigments, electrolyte leakage, relative water content, and biomass production and allocation were evaluated. Drought reduced the photosynthetic capacity of plants by impairing water balance and membrane integrity, decreasing biomass accumulation, mainly in globular roots. The application of low carnitine (5 µM) mitigated these negative effects caused by drought, increasing membrane integrity and water balance of plants, while higher carnitine concentration (50 and 500 µM) aggravated drought stress. This study highlights the potential of carnitine in the mitigation of drought stress on radish plants, supporting its role as a biostimulant. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01308-6.

3.
Funct Plant Biol ; 49(9): 822-831, 2022 08.
Article in English | MEDLINE | ID: mdl-35697057

ABSTRACT

Water deficit is the most critical factor limiting plant growth and production and salicylic acid (SA) has potential for stress mitigation in plants; therefore, we evaluated the effect of SA on radish (Raphanus sativus L.) growth and ecophysiology under water deficit. Plants were sprayed with SA (100µM) or water (control), and irrigated at 80% (W80), 60% (W60), 40% (W40), and 20% (W20) of field capacity. The SA treatments and drought stress started 7days after sowing and lasted until the end of the cycle (30days after sowing). The morphophysiological analyses showed that radish plants had impaired growth at the lower water supply levels, but the treatment with SA reversed these growth restraints under moderate stress, leading to increases in shoot mass at W40 and storage root mass at W60 and W40. SA treatment also reversed the reduction of storage root volume at W60. The tendency of water deficit to increase F O and reduce F V /F M suggests possible damage to the photosystem II of drought-stressed plants. The parameters of gas exchange and photosynthetic pigments showed maintained photosynthetic efficiency, but total photosynthesis decreased due the lower shoot dry mass. Overall, exogenously applied SA reversed the growth restraints at W60 and W40, which revealed that SA was effective in mitigating the effects of moderate water deficit on biomass accumulation and partitioning in radish plants.


Subject(s)
Raphanus , Droughts , Photosynthesis , Salicylic Acid/pharmacology , Water/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...