Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res Commun ; 48(3): 1697-1705, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519756

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) transmission in livestock, community, and healthcare settings poses a significant public health concern both locally and globally. This study aimed to investigate the occurrence, molecular detection, and antibiogram of the MRSA strain in fresh beef, contact surfaces, and butchers' knives from the four major abattoirs (Karu, Gwagwalada, Deidei, and Kubwa) located in the Federal Capital Territory, Nigeria. A multi-stage sampling technique was used to collect 400 swab samples from butchers' knives (132), fresh beef (136), and contact surfaces (132). Presumptive colonies on mannitol salt agar were subjected to culture, isolation, and biotyping. The antibiogram was carried out via a Kirby-Bauer disk containing eight antibiotics. MRSA was phenotypically confirmed by oxacillin-resistant screening agar base (ORSAB) and genotypically by PCR to detect the presence of the mecA gene. Out of the 400 samples, 47.24% of fresh beef, 37% of contact surfaces, and 64.33% of butchers' knife swabs were Staphylococcus aureus positive. Thirty-two Staphylococcus aureus-positive isolates were confirmed to be MRSA, 50% fresh beef, 28.12% contact surfaces, and 21.87% butcher's knife swabs. MRSA isolates displayed multidrug-resistant traits, with a high resistance of 90.62% against cloxacillin, and a highest susceptibility of 100% to co-trimaxole. The antibiogram showed MRSA strains to be multidrug resistant. Molecular characterisation of the MRSA detected the presence of the mecA gene at a band size of 163 bp in all isolates. Strict hygiene of butchers, and working equipment in meat processing and marketing should be of top priority.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Animals , Nigeria , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Cattle , Microbial Sensitivity Tests , Humans , Anti-Bacterial Agents/pharmacology , Abattoirs , Zoonoses/microbiology , Livestock/microbiology , Drug Resistance, Multiple, Bacterial/genetics
2.
Metab Brain Dis ; 35(5): 819-827, 2020 06.
Article in English | MEDLINE | ID: mdl-32172520

ABSTRACT

As feared and deadly human diseases globally, Rabies virus contrived mechanisms to escape early immune recognition via suppression of the interferon response. This study, preliminarily investigated whether Rabies virus employs epigenetic mechanism for the suppression of the interferon using the Challenge virus standard (CVS) strain and Nigerian street Rabies virus (SRV) strain. Mice were challenged with Rabies virus (RABV) infection, and presence of RABV antigen was assessed by direct fluorescent antibody test (DFAT). A real time quantitative Polymerase chain reaction (qRT-PCR) was used to measure the expression of type II interferon gamma (IFNG) and methylation specific quantitative PCR for methylation analysis of 1FNG promoter region. Accordingly, DNA methyltransferase (DNMT) and histone acetyltransferase (HAT) enzymes activities were determined. RABV antigen was detected in all infected samples. A statistically significant increase (p < 0.05) in mRNA level of IFNG was observed at the onset of the disease and a decrease as the disease progressed. An increase in methylation in the test groups from the control group was observed, with a fluctuation in methylation as the disease progressed. DNMT and HAT activities also agree with methylation as there was an observed increase activity in test group compared with control group. Similar fluctuation pattern was observed in both CVS and SRV groups as the disease progressed with HAT, being the most active proportionally. This study suggests that epigenetic modification via DNA methylation and histone acetylation may have played a role in the expression of type II interferon gamma in Rabies virus infection. Graphical abstract.


Subject(s)
Epigenesis, Genetic/genetics , Interferon-gamma/genetics , Rabies/metabolism , Animals , Antigens, Viral/biosynthesis , Antigens, Viral/genetics , DNA (Cytosine-5-)-Methyltransferase 1/biosynthesis , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation , Gene Expression Regulation , Histone Acetyltransferases/metabolism , Interferon-gamma/biosynthesis , Mice , Rabies/immunology , Rabies virus
SELECTION OF CITATIONS
SEARCH DETAIL
...