Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 107(9): 2411-2419, 2018 09.
Article in English | MEDLINE | ID: mdl-29802933

ABSTRACT

Administration of local anesthetics is one of the most effective pain control techniques for postoperative analgesia. However, anesthetic agents easily diffuse into the injection site, limiting the time of anesthesia. One approach to prolong analgesia is to entrap local anesthetic agents in nanostructured carriers (e.g., liposomes). Here, we report that using an ammonium sulphate gradient was the best strategy to improve the encapsulation (62.6%) of dibucaine (DBC) into liposomes. Light scattering and nanotracking analyses were used to characterize vesicle properties, such as, size, polydispersity, zeta potentials, and number. In vitro kinetic experiments revealed the sustained release of DBC (50% in 7 h) from the liposomes. In addition, in vitro (3T3 cells in culture) and in vivo (zebrafish) toxicity assays revealed that ionic-gradient liposomes were able to reduce DBC cyto/cardiotoxicity and morphological changes in zebrafish larvae. Moreover, the anesthesia time attained after infiltrative administration in mice was longer with encapsulated DBC (27 h) than that with free DBC (11 h), at 320 µM (0.012%), confirming it as a promising long-acting liposome formulation for parenteral drug administration of DBC.


Subject(s)
Anesthetics, Local/pharmacokinetics , Anesthetics, Local/toxicity , Dibucaine/pharmacokinetics , Dibucaine/toxicity , Motor Activity/drug effects , Pain Measurement/drug effects , Animals , BALB 3T3 Cells , Cell Survival/drug effects , Cell Survival/physiology , Drug Liberation , Liposomes , Male , Mice , Motor Activity/physiology , Pain Measurement/methods , Phosphatidylcholines/pharmacokinetics , Phosphatidylcholines/toxicity , Zebrafish
2.
Ecotoxicol Environ Saf ; 148: 367-376, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29096263

ABSTRACT

The insecticide Diflubenzuron (DFB), used by many fish farming, when metabolized or degraded produces the extremely toxic compound p-chloroaniline (PCA). Once in the aquatic environment, these compounds can form mixtures and their bioavailability depends on factors such as the presence of soil. The toxic effects of the isolated compounds and their mixtures in the proportions: 75%, 50%, and 25% of PCA were analyzed in tilapia (Oreochromis niloticus) in the presence and absence of soil after 96h. The enzymes catalase (CAT), acid (AcP) and alkaline (AlP) phosphatases and alanine (ALT) and aspartate (AST) aminotransferases of the liver of the tilapia (Oreochromis niloticus) were used as biomarkers. DFB and the mixture containing 75% of this compound did not present high toxicity to fish; however, 25mg/L of PCA alone and 15mg/L of the mixture with 75% of this compound promoted 50% mortality of tilapia (Oreochromis niloticus). In the presence of soil, these toxicity values decreased to 37 and 25mg/L, respectively. Independent of the presence of soil, a synergistic effect was observed when the proportion of PCA was 75% and to the mixture, with 25% PCA was observed the antagonistic effect. Different concentrations of the compounds and their mixtures induced CAT activity independently of the presence of soil. Additionally, increases in phosphatases and transaminases activities were observed. In some cases, the enzymes also had their activities decreased and the dose-dependence effects were not observed. This research showed that the presence of soil influenced the toxicity of the compounds but not altered interaction type among them. Diflubenzuron, p-chloroaniline, and mixtures thereof caused disorders in enzymes important for the health of tilapia (Oreochromis niloticus).


Subject(s)
Aniline Compounds/toxicity , Diflubenzuron/toxicity , Insecticides/toxicity , Soil , Tilapia/metabolism , Water Pollutants, Chemical/toxicity , Animals , Aspartate Aminotransferases/metabolism , Biomarkers/metabolism , Catalase/metabolism , Cichlids/metabolism , Liver/drug effects , Liver/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...