Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Am J Physiol Renal Physiol ; 309(11): F916-24, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26423860

ABSTRACT

The ascending thin limbs (ATLs) and lower descending thin limbs (DTLs) of Henle's loop in the inner medulla of the rat are highly permeable to urea, and yet no urea transporters have been identified in these sections. We hypothesized that novel, yet-unidentified transporters in these tubule segments could explain the high urea permeability. cDNAs encoding for Na(+)-glucose transporter 1a (SGLT1a), Na(+)-glucose transporter 1 (NaGLT1), urea transporter (UT)-A2c, and UT-A2d were isolated and cloned from the Munich-Wistar rat inner medulla. SGLT1a is a novel NH2-terminal truncated variant of SGLT1. NaGLT1 is a Na(+)-dependent glucose transporter primarily located in the proximal tubules and not previously described in the thin limbs. UT-A2c and UT-A2d are novel variants of UT-A2. UT-A2c is truncated at the COOH terminus, and UT-A2d has one exon skipped. When rats underwent water restriction for 72 h, mRNA levels of SGLT1a increased in ATLs, NaGLT1 levels increased in both ATLs and DTLs, and UT-A2c increased in ATLs. [(14)C]urea uptake assays performed on Xenopus oocytes heterologously expressing these proteins revealed that despite having structural differences from their full-length versions, SGLT1a, UT-A2c, and UT-A2d enhanced urea uptake. NaGLT1 also facilitated urea uptake. Uptakes were Na(+) independent and inhibitable by phloretin and/or phloridzin. Our data indicate that there are several alternative channels for urea in the rat inner medulla that could potentially contribute to the high urea permeabilities in thin limb segments.


Subject(s)
Kidney Medulla/metabolism , Loop of Henle/metabolism , Membrane Transport Proteins/metabolism , Sodium-Glucose Transporter 1/metabolism , Urea/metabolism , Amino Acid Sequence , Animals , Biological Transport , Dehydration/genetics , Dehydration/metabolism , Female , Gene Expression Regulation , Kidney Medulla/drug effects , Loop of Henle/drug effects , Male , Membrane Transport Modulators/pharmacology , Membrane Transport Proteins/drug effects , Membrane Transport Proteins/genetics , Molecular Sequence Data , Oocytes/metabolism , Osmolar Concentration , Permeability , RNA, Messenger/metabolism , Rats, Wistar , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 1/genetics , Time Factors , Transcription, Genetic , Xenopus , Urea Transporters
3.
Am J Physiol Renal Physiol ; 309(7): F627-37, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26290371

ABSTRACT

The architecture of the inner stripe of the outer medulla of the human kidney has long been known to exhibit distinctive configurations; however, inner medullary architecture remains poorly defined. Using immunohistochemistry with segment-specific antibodies for membrane fluid and solute transporters and other proteins, we identified a number of distinctive functional features of human inner medulla. In the outer inner medulla, aquaporin-1 (AQP1)-positive long-loop descending thin limbs (DTLs) lie alongside descending and ascending vasa recta (DVR, AVR) within vascular bundles. These vascular bundles are continuations of outer medullary vascular bundles. Bundles containing DTLs and vasa recta lie at the margins of coalescing collecting duct (CD) clusters, thereby forming two regions, the vascular bundle region and the CD cluster region. Although AQP1 and urea transporter UT-B are abundantly expressed in long-loop DTLs and DVR, respectively, their expression declines with depth below the outer medulla. Transcellular water and urea fluxes likely decline in these segments at progressively deeper levels. Smooth muscle myosin heavy chain protein is also expressed in DVR of the inner stripe and the upper inner medulla, but is sparsely expressed at deeper inner medullary levels. In rodent inner medulla, fenestrated capillaries abut CDs along their entire length, paralleling ascending thin limbs (ATLs), forming distinct compartments (interstitial nodal spaces; INSs); however, in humans this architecture rarely occurs. Thus INSs are relatively infrequent in the human inner medulla, unlike in the rodent where they are abundant. UT-B is expressed within the papillary epithelium of the lower inner medulla, indicating a transcellular pathway for urea across this epithelium.


Subject(s)
Kidney Medulla/anatomy & histology , Kidney Medulla/physiology , Aquaporin 1/metabolism , Capillaries/metabolism , Epithelium/metabolism , Humans , Imaging, Three-Dimensional , Immunohistochemistry , In Vitro Techniques , Kidney Concentrating Ability/physiology , Kidney Tubules/metabolism , Kidney Tubules, Collecting/metabolism , Oxygen Consumption
4.
Compr Physiol ; 4(2): 405-573, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24715560

ABSTRACT

The article discusses advances in osmoregulation and excretion with emphasis on how multicellular animals in different osmotic environments regulate their milieu intérieur. Mechanisms of energy transformations in animal osmoregulation are dealt with in biophysical terms with respect to water and ion exchange across biological membranes and coupling of ion and water fluxes across epithelia. The discussion of functions is based on a comparative approach analyzing mechanisms that have evolved in different taxonomic groups at biochemical, cellular and tissue levels and their integration in maintaining whole body water and ion homeostasis. The focus is on recent studies of adaptations and newly discovered mechanisms of acclimatization during transitions of animals between different osmotic environments. Special attention is paid to hypotheses about the diversity of cellular organization of osmoregulatory and excretory organs such as glomerular kidneys, antennal glands, Malpighian tubules and insect gut, gills, integument and intestine, with accounts on experimental approaches and methods applied in the studies. It is demonstrated how knowledge in these areas of comparative physiology has expanded considerably during the last two decades, bridging seminal classical works with studies based on new approaches at all levels of anatomical and functional organization. A number of as yet partially unanswered questions are emphasized, some of which are about how water and solute exchange mechanisms at lower levels are integrated for regulating whole body extracellular water volume and ion homeostasis of animals in their natural habitats. © 2014 American Physiological Society.


Subject(s)
Adaptation, Physiological/physiology , Osmoregulation/physiology , Water-Electrolyte Balance/physiology , Animals , Biological Transport , Physiology, Comparative
5.
Am J Physiol Renal Physiol ; 306(1): F123-9, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24197065

ABSTRACT

To better understand the role that water and urea fluxes play in the urine concentrating mechanism, we determined transepithelial osmotic water permeability (Pf) and urea permeability (Purea) in isolated perfused Munich-Wistar rat long-loop descending thin limbs (DTLs) and ascending thin limbs (ATLs). Thin limbs were isolated either from 0.5 to 2.5 mm below the outer medulla (upper inner medulla) or from the terminal 2.5 mm of the inner medulla. Segment types were characterized on the basis of structural features and gene expression levels of the water channel aquaporin 1, which was high in the upper DTL (DTLupper), absent in the lower DTL (DTLlower), and absent in ATLs, and the Cl-(1) channel ClCK1, which was absent in DTLs and high in ATLs. DTLupper Pf was high (3,204.5 ± 450.3 µm/s), whereas DTLlower showed very little or no osmotic Pf (207.8 ± 241.3 µm/s). Munich-Wistar rat ATLs have previously been shown to exhibit no Pf. DTLupper Purea was 40.0 ± 7.3 × 10(-5) cm/s and much higher in DTLlower (203.8 ± 30.3 × 10(-5) cm/s), upper ATL (203.8 ± 35.7 × 10(-5) cm/s), and lower ATL (265.1 ± 49.8 × 10(-5) cm/s). Phloretin (0.25 mM) did not reduce DTLupper Purea, suggesting that Purea is not due to urea transporter UT-A2, which is expressed in short-loop DTLs and short portions of some inner medullary DTLs close to the outer medulla. In summary, Purea is similar in all segments having no osmotic Pf but is significantly lower in DTLupper, a segment having high osmotic Pf. These data are inconsistent with the passive mechanism as originally proposed.


Subject(s)
Loop of Henle/metabolism , Urea/metabolism , Water/metabolism , Animals , Gene Expression Regulation/physiology , Loop of Henle/anatomy & histology , Male , Osmotic Pressure , Permeability , Rats , Tissue Culture Techniques , Urea/chemistry , Water/chemistry
6.
Clin J Am Soc Nephrol ; 9(10): 1781-9, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-23908457

ABSTRACT

The ability of mammals to produce urine hyperosmotic to plasma requires the generation of a gradient of increasing osmolality along the medulla from the corticomedullary junction to the papilla tip. Countercurrent multiplication apparently establishes this gradient in the outer medulla, where there is substantial transepithelial reabsorption of NaCl from the water-impermeable thick ascending limbs of the loops of Henle. However, this process does not establish the much steeper osmotic gradient in the inner medulla, where there are no thick ascending limbs of the loops of Henle and the water-impermeable ascending thin limbs lack active transepithelial transport of NaCl or any other solute. The mechanism generating the osmotic gradient in the inner medulla remains an unsolved mystery, although it is generally considered to involve countercurrent flows in the tubules and vessels. A possible role for the three-dimensional interactions between these inner medullary tubules and vessels in the concentrating process is suggested by creation of physiologic models that depict the three-dimensional relationships of tubules and vessels and their solute and water permeabilities in rat kidneys and by creation of mathematical models based on biologic phenomena. The current mathematical model, which incorporates experimentally determined or estimated solute and water flows through clearly defined tubular and interstitial compartments, predicts a urine osmolality in good agreement with that observed in moderately antidiuretic rats. The current model provides substantially better predictions than previous models; however, the current model still fails to predict urine osmolalities of maximally concentrating rats.


Subject(s)
Kidney Concentrating Ability , Kidney Medulla/blood supply , Kidney Medulla/physiology , Loop of Henle/physiology , Models, Biological , Renal Circulation , Renal Reabsorption , Sodium Chloride/metabolism , Animals , Diffusion , Osmolar Concentration , Permeability , Rats , Reproducibility of Results
7.
J Pharmacol Exp Ther ; 346(1): 121-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23639800

ABSTRACT

The blood-testis barrier (BTB) prevents the entry of many xenobiotic compounds into seminiferous tubules thereby protecting developing germ cells. Understanding drug transport across the BTB may improve drug delivery into the testis. Members of one class of drug, nucleoside reverse transcriptase inhibitors (NRTIs), do penetrate the BTB, presumably through interaction with physiologic nucleoside transporters. By investigating the mechanism of nucleoside transport, it may be possible to design other drugs to bypass the BTB in a similar manner. We present a novel ex vivo technique to study transport at the BTB that employs isolated, intact seminiferous tubules. Using this system, we found that over 80% of total uptake by seminiferous tubules of the model nucleoside uridine could be inhibited by 100 nM nitrobenzylmercaptopurine riboside (NBMPR, 6-S-[(4-nitrophenyl)methyl]-6-thioinosine), a concentration that selectively inhibits equilibrative nucleoside transporter 1 (ENT1) activity. In primary cultured rat Sertoli cells, 100 nM NBMPR inhibited all transepithelial transport and basolateral uptake of uridine. Immunohistochemical staining showed ENT1 to be located on the basolateral membrane of human and rat Sertoli cells, whereas ENT2 was located on the apical membrane of Sertoli cells. Transepithelial transport of uridine by rat Sertoli cells was partially inhibited by the NRTIs zidovudine, didanosine, and tenofovir disoproxil fumarate, consistent with an interaction between these drugs and ENT transporters. These data indicate that ENT1 is the primary route for basolateral nucleoside uptake into Sertoli cells and a possible mechanism for nucleosides and nucleoside-based drugs to undergo transepithelial transport.


Subject(s)
Blood-Testis Barrier/metabolism , Cell Membrane/metabolism , Equilibrative Nucleoside Transporter 1/metabolism , Equilibrative-Nucleoside Transporter 2/metabolism , Nucleosides/metabolism , Reverse Transcriptase Inhibitors/metabolism , Sertoli Cells/metabolism , Adult , Animals , Biological Transport/drug effects , Blood-Testis Barrier/drug effects , Cell Polarity , Cells, Cultured , Equilibrative Nucleoside Transporter 1/antagonists & inhibitors , Humans , Male , Membrane Transport Modulators/pharmacology , Mice , Protein Transport , Rats , Seminiferous Tubules/cytology , Seminiferous Tubules/drug effects , Seminiferous Tubules/metabolism , Sertoli Cells/cytology , Sertoli Cells/drug effects , Uridine/metabolism
8.
Am J Physiol Renal Physiol ; 304(3): F308-16, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23195680

ABSTRACT

In the inner medulla, radial organization of nephrons and blood vessels around collecting duct (CD) clusters leads to two lateral interstitial regions and preferential intersegmental fluid and solute flows. As the descending (DTLs) and ascending thin limbs (ATLs) pass through these regions, their transepithelial fluid and solute flows are influenced by variable transepithelial solute gradients and structure-to-structure interactions. The goal of this study was to quantify structure-to-structure interactions, so as to better understand compartmentation and flows of transepithelial water, NaCl, and urea and generation of the axial osmotic gradient. To accomplish this, we determined lateral distances of AQP1-positive and AQP1-negative DTLs and ATLs from their nearest CDs, so as to gauge interactions with intercluster and intracluster lateral regions and interactions with interstitial nodal spaces (INSs). DTLs express reduced AQP1 and low transepithelial water permeability along their deepest segments. Deep AQP1-null segments, prebend segments, and ATLs lie equally near to CDs. Prebend segments and ATLs abut CDs and INSs throughout much of their descent and ascent, respectively; however, the distal 30% of ATLs of the longest loops lie distant from CDs as they approach the outer medullary boundary and have minimal interaction with INSs. These relationships occur regardless of loop length. Finally, we show that ascending vasa recta separate intercluster AQP1-positive DTLs from descending vasa recta, thereby minimizing dilution of gradients that drive solute secretion. We hypothesize that DTLs and ATLs enter and exit CD clusters in an orchestrated fashion that is important for generation of the corticopapillary solute gradient by minimizing NaCl and urea loss.


Subject(s)
Kidney Concentrating Ability/physiology , Loop of Henle/cytology , Loop of Henle/metabolism , Animals , Aquaporin 1/metabolism , Biological Transport/physiology , Cell Membrane Permeability/physiology , Male , Models, Animal , Osmosis/physiology , Rats , Rats, Wistar , Sodium Chloride/metabolism , Urea/metabolism
9.
Am J Physiol Regul Integr Comp Physiol ; 303(7): R748-56, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22914749

ABSTRACT

We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to over 6,000 mosmol/kg H(2)O, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary vascular segments in the outer inner medulla were assessed with immunofluorescence and digital reconstructions from tissue sections. Descending vasa recta (DVR) expressing the urea transporter UT-B and the water channel aquaporin 1 lie at the periphery of groups of collecting ducts (CDs) that coalesce in their descent through the inner medulla. Ascending vasa recta (AVR) lie inside and outside groups of CDs. DVR peel away from vascular bundles at a uniform rate as they descend the inner medulla, and feed into networks of AVR that are associated with organized clusters of CDs. These AVR form interstitial nodal spaces, with each space composed of a single CD, two AVR, and one or more ascending thin limbs or prebend segments, an architecture that may lead to solute compartmentation and fluid fluxes essential to the urine concentrating mechanism. Although we have identified several apparent differences, the tubulovascular architecture of the kangaroo rat inner medulla is remarkably similar to that of the Munich Wistar rat at the level of our analyses. More detailed studies are required for identifying interspecies functional differences.


Subject(s)
Dipodomys/anatomy & histology , Dipodomys/physiology , Kidney Concentrating Ability/physiology , Kidney Medulla/anatomy & histology , Kidney Medulla/blood supply , Animals , Aquaporin 1/metabolism , Capillaries/anatomy & histology , Capillaries/cytology , Capillaries/physiology , Female , Kidney Medulla/physiology , Kidney Tubules, Collecting/anatomy & histology , Kidney Tubules, Collecting/blood supply , Kidney Tubules, Collecting/metabolism , Male , Membrane Transport Proteins/metabolism , Models, Animal , Rats , Rats, Wistar , Regional Blood Flow/physiology , Vasopressins/blood , Urea Transporters
10.
Am J Physiol Regul Integr Comp Physiol ; 302(6): R720-6, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22237592

ABSTRACT

We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to more than 6,000 mosmol/kgH(2)O water, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary nephron segments in the initial 3,000 µm below the outer medulla were assessed with digital reconstructions from physical tissue sections. Descending thin limbs of Henle (DTLs), ascending thin limbs of Henle (ATLs), and collecting ducts (CDs) were identified by immunofluorescence using antibodies that label segment-specific proteins associated with transepithelial water flux (aquaporin 1 and 2, AQP1 and AQP2) and chloride flux (the chloride channel ClC-K1); all tubules and vessels were labeled with wheat germ agglutinin. In the outer 3,000 µm of the inner medulla, AQP1-positive DTLs lie at the periphery of groups of CDs. ATLs lie inside and outside the groups of CDs. Immunohistochemistry and reconstructions of loops that form their bends in the outer 3,000 µm of the inner medulla show that, relative to loop length, the AQP1-positive segment of the kangaroo rat is significantly longer than that of the Munich-Wistar rat. The length of ClC-K1 expression in the prebend region at the terminal end of the descending side of the loop in kangaroo rat is about 50% shorter than that of the Munich-Wistar rat. Tubular fluid of the kangaroo rat DTL may approach osmotic equilibrium with interstitial fluid by water reabsorption along a relatively longer tubule length, compared with Munich-Wistar rat. A relatively shorter-length prebend segment may promote a steeper reabsorptive driving force at the loop bend. These structural features predict functionality that is potentially significant in the production of a high urine osmolality in the kangaroo rat.


Subject(s)
Dipodomys/anatomy & histology , Kidney Medulla/anatomy & histology , Loop of Henle/anatomy & histology , Animals , Aquaporin 1/metabolism , Aquaporin 2/metabolism , Chloride Channels/metabolism , Dipodomys/metabolism , Female , Kidney Medulla/metabolism , Loop of Henle/metabolism , Male , Rats, Wistar
11.
Am J Physiol Renal Physiol ; 302(5): F591-605, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22088433

ABSTRACT

We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na(+) or urea-Cl(-) cotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na(+) or urea- Cl(-) cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data.


Subject(s)
Kidney Concentrating Ability/physiology , Kidney Tubules/physiology , Models, Biological , Sodium/metabolism , Symporters/metabolism , Urea/metabolism , Animals , Computer Simulation , Ion Transport , Kidney Tubules/metabolism , Rats
12.
Adv Physiol Educ ; 35(2): 103-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21652490

ABSTRACT

The American Physiological Society (APS) and APS Council encourage the teaching of physiology at the undergraduate, graduate, and medical school levels to support the continued prominence of this area of science. One area identified by the APS Council that is of particular importance for the development of future physiologists (the "physiology pipeline") is the teaching of physiology and physiology-related topics at the undergraduate level. In this article, we describe the historical development and implementation of an undergraduate program offered through the Department of Physiology, a basic science department in the College of Medicine at the University of Arizona, culminating in a Bachelor of Science in Health Sciences degree with a major in Physiology. Moreover, we discuss the current Physiology curriculum offered at our institution and explain how this program prepares our students for successful entry into a variety of postbaccalaureate professional programs, including medical school and numerous other programs in health professions, and in graduate study in the Masters and Doctoral programs in biomedical sciences. Finally, we cover the considerable challenges that we have faced, and continue to face, in developing and sustaining a successful physiology undergraduate major in a college of medicine. We hope that the information provided on the Physiology major offered by the Department of Physiology in the College of Medicine at the University of Arizona will be helpful for individuals at other institutions who may be contemplating the development and implementation of an undergraduate program in Physiology.


Subject(s)
Education, Premedical/methods , Physiology/education , Schools, Medical , Anatomy/education , Arizona , Curriculum , Educational Status , Humans , Societies, Scientific
13.
Am J Physiol Renal Physiol ; 298(4): F962-72, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20042460

ABSTRACT

Simulations conducted in a mathematical model were used to exemplify the hypothesis that elevated solute concentrations and tubular flows at the boundary of the renal outer and inner medullas of rats may contribute to increased urine osmolalities and urine flow rates. Such elevated quantities at that boundary may arise from hyperfiltration and from inner stripe hypertrophy, which are correlated with increased concentrating activity (Bankir L, Kriz W. Kidney Int. 47: 7-24, 1995). The simulations used the region-based model for the rat inner medulla that was presented in the companion study (Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Am J Physiol Renal Physiol 298: F000-F000, 2010). The simulations were suggested by experiments which were conducted in rat by Gamble et al. (Gamble JL, McKhann CF, Butler AM, Tuthill E. Am J Physiol 109: 139-154, 1934) in which the ratio of NaCl to urea in the diet was systematically varied in eight successive 5-day intervals. The simulations predict that changes in boundary conditions at the boundary of the outer and inner medulla, accompanied by plausible modifications in transport properties of the collecting duct system, can significantly increase urine osmolality and flow rate. This hyperfiltration-hypertrophy hypothesis may explain the finding by Gamble et al. that the maximum urine osmolality attained from supplemental feeding of urea and NaCl in the eight intervals depends on NaCl being the initial predominant solute and on urea being the final predominant solute, because urea in sufficient quantity appears to stimulate concentrating activity. More generally, the hypothesis suggests that high osmolalities and urine flow rates may depend, in large part, on adaptive modifications of cortical hemodynamics and on outer medullary structure and not entirely on an extraordinary concentrating capability that is intrinsic to the inner medulla.


Subject(s)
Kidney Concentrating Ability/physiology , Kidney Medulla/physiology , Animals , Computer Simulation , Diet , Hypertrophy , Kidney Diseases/metabolism , Kidney Medulla/drug effects , Models, Biological , Osmolar Concentration , Rats , Sodium Chloride/analysis , Sodium Chloride/pharmacology , Urea/pharmacology
14.
Am J Physiol Renal Physiol ; 298(4): F973-87, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20053796

ABSTRACT

A new, region-based mathematical model of the urine concentrating mechanism of the rat renal inner medulla (IM) was used to investigate the significance of transport and structural properties revealed in recent studies that employed immunohistochemical methods combined with three-dimensional computerized reconstruction. The model simulates preferential interactions among tubules and vessels by representing two concentric regions. The inner region, which represents a collecting duct (CD) cluster, contains CDs, some ascending thin limbs (ATLs), and some ascending vasa recta; the outer region, which represents the intercluster region, contains descending thin limbs, descending vasa recta, remaining ATLs, and additional ascending vasa recta. In the upper portion of the IM, the model predicts that interstitial Na(+) and urea concentrations (and osmolality) in the CD clusters differ significantly from those in the intercluster regions: model calculations predict that those CD clusters have higher urea concentrations than the intercluster regions, a finding that is consistent with a concentrating mechanism that depends principally on the mixing of NaCl from ATLs and urea from CDs. In the lower IM, the model predicts that limited or nearly zero water permeability in descending thin limb segments will increase concentrating effectiveness by increasing the rate of solute-free water absorption. The model predicts that high urea permeabilities in the upper portions of ATLs and increased contact areas of longest loop bends with CDs both modestly increase concentrating capability. A surprising finding is that the concentrating capability of this region-based model falls short of the capability of a model IM that has radially homogeneous interstitial fluid at each level but is otherwise analogous to the region-based model.


Subject(s)
Kidney Medulla/anatomy & histology , Kidney Medulla/physiology , Models, Biological , Animals , Computer Simulation , Kidney Concentrating Ability/physiology , Rats
15.
Physiology (Bethesda) ; 24: 250-6, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19675356

ABSTRACT

The urine concentrating mechanism of the mammalian kidney, which can produce a urine that is substantially more concentrated than blood plasma during periods of water deprivation, is one of the enduring mysteries in traditional physiology. Owing to the complex lateral and axial relationships of tubules and vessels, in both the outer and inner medulla, the urine concentrating mechanism may only be fully understood in terms of the kidney's three-dimensional functional architecture and its implications for preferential interactions among tubules and vessels.


Subject(s)
Blood Vessels/physiology , Kidney Medulla/physiology , Urine/physiology , Animals , Kidney Medulla/blood supply , Kidney Tubules/blood supply , Kidney Tubules/physiology , Loop of Henle/blood supply , Loop of Henle/physiology , Models, Animal , Rats
16.
Am J Physiol Renal Physiol ; 295(5): F1271-85, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18495796

ABSTRACT

Recent studies of three-dimensional architecture of rat renal inner medulla (IM) and expression of membrane proteins associated with fluid and solute transport in nephrons and vasculature have revealed structural and transport properties that likely impact the IM urine concentrating mechanism. These studies have shown that 1) IM descending thin limbs (DTLs) have at least two or three functionally distinct subsegments; 2) most ascending thin limbs (ATLs) and about half the ascending vasa recta (AVR) are arranged among clusters of collecting ducts (CDs), which form the organizing motif through the first 3-3.5 mm of the IM, whereas other ATLs and AVR, along with aquaporin-1-positive DTLs and urea transporter B-positive descending vasa recta (DVR), are external to the CD clusters; 3) ATLs, AVR, CDs, and interstitial cells delimit interstitial microdomains within the CD clusters; and 4) many of the longest loops of Henle form bends that include subsegments that run transversely along CDs that lie in the terminal 500 microm of the papilla tip. Based on a more comprehensive understanding of three-dimensional IM architecture, we distinguish two distinct countercurrent systems in the first 3-3.5 mm of the IM (an intra-CD cluster system and an inter-CD cluster system) and a third countercurrent system in the final 1.5-2 mm. Spatial arrangements of loop of Henle subsegments and multiple countercurrent systems throughout four distinct axial IM zones, as well as our initial mathematical model, are consistent with a solute-separation, solute-mixing mechanism for concentrating urine in the IM.


Subject(s)
Kidney Concentrating Ability/physiology , Kidney Medulla/anatomy & histology , Kidney Medulla/physiology , Models, Biological , Animals , Extracellular Space/physiology , Loop of Henle/anatomy & histology , Loop of Henle/physiology , Membrane Transport Proteins/physiology , Mice , Rats , Urea Transporters
17.
Am J Physiol Renal Physiol ; 294(6): F1306-14, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18417543

ABSTRACT

Three-dimensional functional reconstructions of descending thin limbs (DTLs) and ascending thin limbs (ATLs) of loops of Henle, descending vasa recta (DVR), ascending vasa recta (AVR), and collecting ducts (CDs) permit quantitative definition of lateral and axial zones of probable functional significance in rat inner medulla (IM). CD clusters form the organizing motif for loops of Henle and vasa recta in the initial 3.0-3.5 mm of the IM. Using Euclidean distance mapping, we defined the lateral boundary of each cluster by pixels lying maximally distant from any CD. DTLs and DVR lie almost precisely on this independently defined boundary, placing them in the intercluster interstitium maximally distant from any CD. ATLs and AVR lie in a nearly uniform pattern throughout intercluster and intracluster regions, which we further differentiated by a polygon around CDs in each cluster. Loops associated with individual CD clusters show a similar axial exponential decrease as all loops together in the IM. Because approximately 3.0-3.5 mm below the IM base CD clusters cease to form the organizing motif, all DTLs lack aquaporin 1 (AQP1), and all vasa recta are fenestrated, we have designated the first 3.0-3.5 mm of the IM the "outer zone" (OZ) and the final 1.5-2.0 mm the "inner zone" (IZ). We further subdivided these into OZ-1, OZ-2, IZ-1, and IZ-2 on the basis of the presence of completely AQP1-null DTLs only in the first 1 mm and on broad transverse loop bends only in the final 0.5 mm. These transverse segments expand surface area for probable NaCl efflux around loop bends from approximately 40% to approximately 140% of CD surface area in the final 100 microm of the papilla.


Subject(s)
Imaging, Three-Dimensional , Kidney Concentrating Ability/physiology , Kidney Medulla/cytology , Kidney Medulla/metabolism , Loop of Henle/cytology , Loop of Henle/metabolism , Animals , Aquaporin 1/metabolism , Chloride Channels/metabolism , Immunohistochemistry , Kidney Medulla/blood supply , Loop of Henle/blood supply , Male , Membrane Transport Proteins/metabolism , Microcirculation , Rats , Rats, Wistar , Renal Circulation , Urea Transporters
18.
Am J Physiol Renal Physiol ; 293(3): F696-704, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17609288

ABSTRACT

Three-dimensional architecture of vasculature and nephrons in rat renal papilla was assessed by digital reconstruction. Descending vasa recta (DVR), ascending vasa recta (AVR), descending thin limbs (DTLs), ascending thin limbs (ATLs), and collecting ducts (CDs) were identified with antibodies against segment-specific proteins. DTLs are distributed nonuniformly in transverse sections of papilla, but lateral compartmentation between DTLs and CD clusters that occurs in outer IM makes no contribution to concentrating mechanism in papilla. ATLs are distributed nearly uniformly throughout IM. Vasa recta within approximately 2 mm of the papilla tip are primarily fenestrated vessels; therefore, AVR and DVR can only be determined by blood flow direction. CDs within approximately 500 microm of the papilla tip have nearly 100% greater circumference than CDs within first 1-2 mm below the IM base. Return of water to general circulation from deep papillary CDs appears to be facilitated by a 150% increase in the number of AVR closely abutting these CDs. Consequently, average fractional CD surface area abutting AVR is 0.61, about the same as that (0.54) for smaller CDs that lie near the IM base. Interstitial nodal compartments, bounded by CDs, ATLs, and AVR, surround CDs along the axis of the IM. Fewer ATLs exist in the final 1 mm, as there are fewer loops and the number of these nodal arrangements is therefore reduced. However, tips of many of those loops reaching this area have bends with 50-100% greater transverse lengths than bends of loops near the IM base. This may be significant for solute movement out of loop bends.


Subject(s)
Kidney Medulla/anatomy & histology , Kidney Tubules, Collecting/anatomy & histology , Loop of Henle/anatomy & histology , Animals , Computer Simulation , Cryoultramicrotomy , Immunohistochemistry , Male , Rats
19.
Am J Physiol Renal Physiol ; 293(1): F382-90, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17429029

ABSTRACT

D-Serine selectively causes necrosis of S(3) segments of proximal tubules in rats. This leads to aminoaciduria and glucosuria. Coinjection of the nonmetabolizable amino acid alpha-aminoisobutyric acid (AIB) prevents the tubulopathy. D-serine is selectively reabsorbed in S(3), thereby gaining access to peroxisomal D-amino acid oxidase (D-AAO). D-AAO-mediated metabolism produces reactive oxygen species. We determined the fractional excretion of amino acids and glucose in rats after intraperitoneal injection of d-serine alone or together with reduced glutathione (GSH) or AIB. Both compounds prevented the hyperaminoaciduria. We measured GSH concentrations in renal tissue before (control) and after D-serine injection and found that GSH levels decreased to approximately 30% of control. This decrease was prevented when equimolar GSH was coinjected with D-serine. To find out why AIB protected the tubule from D-serine toxicity, we microinfused D-[(14)C]serine or [(14)C]AIB (0.36 mmol/l) together with [(3)H]inulin in late proximal tubules in vivo and measured the radioactivity in the final urine. Fractional reabsorption of D-[(14)C]serine and [(14)C]AIB amounted to 55 and 70%, respectively, and 80 mmol/l of AIB or D-serine mutually prevented reabsorption to a great extent. D-AAO activity measured in vitro (using D-serine as substrate) was not influenced by a 10-fold higher AIB concentration. We conclude from these results that 1) D-AAO-mediated d-serine metabolism lowers renal GSH concentrations and thereby provokes tubular damage because reduction of reactive oxygen species by GSH is diminished and 2) AIB prevents d-serine-induced tubulopathy by inhibition of D-serine uptake in S(3) segments rather than by interfering with intracellular D-AAO-mediated D-serine metabolism.


Subject(s)
Aminoisobutyric Acids/therapeutic use , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Serine/toxicity , Amino Acids/blood , Animals , D-Amino-Acid Oxidase/antagonists & inhibitors , Dose-Response Relationship, Drug , Glucose/metabolism , Glutathione/metabolism , Glycosuria/chemically induced , Hydrogen Peroxide/metabolism , Injections, Intraperitoneal , Insulin , Kidney/drug effects , Kidney/metabolism , Kidney Diseases/pathology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Loop of Henle/drug effects , Loop of Henle/metabolism , Male , Oxidation-Reduction , Rats , Rats, Wistar , Serine/administration & dosage , Serine/metabolism
20.
Adv Physiol Educ ; 30(1): 1-4, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16481600

ABSTRACT

In 2005, The American Physiological Society initiated The Living History of Physiology Project to recognize senior members who have made extraordinary contributions during their career to the advancement of the discipline and profession of physiology. Each physiologist will be interviewed for archival purposes, and the video tape will be available from the American Physiological Society Headquarters. In addition, a biographical profile of the recipient will be published in Advances in Physiology Education.


Subject(s)
Medical Laboratory Personnel/history , Physiology/history , Arizona , History, 20th Century , History, 21st Century , Humans , Societies, Scientific/history
SELECTION OF CITATIONS
SEARCH DETAIL
...