Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36850320

ABSTRACT

The alkaline extraction of hemicelluloses from a mixture of three varieties of wheat straw (containing 40.1% cellulose, 20.23% xylan, and 26.2% hemicellulose) was analyzed considering the following complementary pre-treatments: freeze-thaw cycles, microwaves, and ultrasounds. The two cycles freeze-thaw approach was selected based on simplicity and energy savings for further analysis and optimization. Experiments planned with Design Expert were performed. The regression model determined through the response surface methodology based on the severity factor (defined as a function of time and temperature) and alkali concentration as variables was then used to optimize the process in a multi-objective case considering the possibility of further use for pulping. To show the properties and chemical structure of the separated hemicelluloses, several analytical methods were used: high-performance chromatography (HPLC), Fourier-transformed infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H-NMR), thermogravimetry and derivative thermogravimetry analysis (TG, DTG), and scanning electron microscopy (SEM). The verified experimental optimization result indicated the possibility of obtaining hemicelluloses material containing 3.40% glucan, 85.51% xylan, and 7.89% arabinan. The association of hot alkaline extraction with two freeze-thaw cycles allows the partial preservation of the hemicellulose polymeric structure.

2.
Pharmaceutics ; 14(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36365195

ABSTRACT

The increasing incidence of skin diseases, against the background of increased pollution, urbanism, poor habits in lifestyle, work, rest, diet and general medication, led to the development of products with a protective effect. These new types of dermatocosmetic preparations ensure maximum benefits with minimal formulation. Antioxidants are, nowadays, ingredients that stand out with a proven role in skin protection from oxidative stress and its effects. Thus, research has shown that light-textured formulas, quickly absorbed into the skin, with optimum hydration and protection against excessive free radicals, uphold the skin integrity and appearance. This article aims to evaluate essential criteria for a newly marketed product: stability, rheological properties and microbiological characteristics of oil-in-water emulsions based on a mixture of 3% resveratrol 0.5% ferulic acid and 1mL alcoholic extract of Saffron. The tests led to the conclusion that O / W dermatocosmetic emulsions, based on 3% resveratrol and 0.5% ferulic acid, or also 1mL alcoholic extract of Saffron, show resistance to microbiological contamination, good rheological properties (viscoelastic behavior, structural stability, acceptable shearing behavior) that reveal satisfactory texture and high physical stability during storage. These results encourage the transition to dermatological testing as the final stage in considering a new commercial product.

3.
Materials (Basel) ; 15(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36013833

ABSTRACT

Knowing the thermodynamic and transport properties of liquid systems is very important in engineering for the development of theoretical models and for the design of new technologies. Models that allow accurate predictions of thermodynamic and transport properties are needed in chemical engineering calculations involving fluid, heat, and mass transfer. In this study, the modeling of viscosity deviation for binary and ternary systems containing benzyl alcohol, n-hexanol, and water, less studied in the literature, was carried out using Redlich and Kister (R-L) models, multiple linear regression (MLR) models and artificial neural networks (ANN). The viscosity of the binary and ternary systems was experimentally determined at the following temperatures: 293.15, 303.15, 313.15, and 323.15 K. Viscosity deviation was calculated and then correlated with mole fractions, normalized temperature, and refractive index. The neural model that led to the best performance in the testing and validation stages contains 4 neurons in the input layer, 12 neurons in the hidden layer, and one neuron in the output layer. In the testing stage for this model, the standard deviation is 0.0067, and the correlation coefficient is 0.999. In the validation stage, a deviation of 0.0226 and a correlation coefficient of 0.996 were obtained. The MLR model led to worse results than those obtained with the neural model and also with the R-L models. The standard deviation for this model is 0.099, and the correlation coefficient is 0.898. Its advantage over the R-L type models is that the influence of both composition and temperature are included in a single equation.

4.
Gels ; 8(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35735692

ABSTRACT

The influence of the hydroxyl groups (OH) type on the polyaddition processes of isocyanates represents a critical approach for the design of multicomponent polyurethane systems. Herein, to prove the effect of hydroxyl nature on both the isocyanate-OH polyaddition reactions and the structure/properties of the resulting networks, two structurally different cyclodextrins in terms of the primary and secondary groups' ratio were analyzed, namely native ß-cyclodextrin (CD) and its derivative esterified to the primary hydroxyl groups with oligolactide chains (CDLA). Thus, polyurethane hydrogels were prepared via the polyaddition of CD or CDLA to isophorone diisocyanate polyethylene glycol-based prepolymers (PEG-(NCO)2). The degradable character of the materials was induced by intercalating oligolactide short sequences into the polymer chains composing the polymer network. In order to establish the influence of the OH type, the synthesis of polyurethane hydrogels was analyzed by a rheological investigation of the overall system reactivity. Materials properties such as swelling behavior, thermal properties and hydrolytic degradation were influenced by the reaction feed. Specifically, the presence of primary OH groups leads to more compact networks with similar water uptake, disregarding the CD content, while the predominance of secondary OH groups together with the presence of oligolactide spacers leads to the fine tuning of the water swelling properties.

5.
Polymers (Basel) ; 14(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35566831

ABSTRACT

In this paper, we describe an experimental study on the hot alkali extraction of hemicelluloses from wheat straw and corn stalks, two of the most common lignocellulosic biomass constituents in Romania. The chemical compositions of the raw materials were determined analytically, and the relevant chemical components were cellulose, hemicelluloses, lignin, and ash. Using the response surface methodology, the optimum values of the hot alkaline extraction parameters, i.e., time, temperature, and NaOH concentration, were identified and experimentally validated. The physicochemical characterization of the isolated hemicelluloses was performed using HPLC, FTIR, TG, DTG, and 1H-NMR spectroscopy. The main hemicellulose components identified experimentally were xylan, arabinan, and glucan. The study emphasizes that both corn stalks and wheat straw are suitable as raw materials for hemicellulose extraction, highlighting the advantages of alkaline pretreatments and showing that optimization methods can further improve the process efficiency.

6.
Int J Biol Macromol ; 193(Pt A): 996-1008, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34756969

ABSTRACT

Chitosan-based nanofibers (CS-NFs) are excellent artificial extracellular matrices (ECMs) due to the resemblance of CS with the glycosaminoglycans of the natural ECMs. Despite this excellent feature, the poor electrospinnability and mechanical properties of CS are responsible for important limitations in respect to its biomedical applications. To improve the CS's physico-chemical properties, new bioactive and biomimetic CS-NFs were formulated with polyethylene oxide (PEO), having incorporated different active components (ACs) with important beneficial effects for healing. Manuka honey (trophic and antimicrobial effects), propolis (antimicrobial effects), Calendula officinalis infusion (antioxidant effect, reepithelialization stimulating agent), insulin (trophic effect), and L-arginine (angiogenic effect) were selected as ACs. SEM morphology analysis revealed well-alignment, unidirectional arrays, with small diameters, no beads, and smooth surfaces for developed CS_PEO-ACs NFs. The developed NFs showed good biodegradability (NFs mats lost up to 60% of their initial weight in PBS), increased hemocompatibility (hemolytic index less than 4%), and a reduced cytotoxicity degree (cell viability degree more than 90%). In addition, significant antioxidant and antimicrobial effects were noted for the developed NFs which make them suitable for chronic wounds, due to the role of oxidative stress and infection risk in delaying normal wound healing. The most suitable for wound healing applications seems to be CS_PEO@P_C which showed an improved hemolysis index (2.92 ± 0.16%), is non-toxic (cell viability degree more than 97%), and has also significant radical scavenging effect (DPPH inhibition more than 65%). In addition, CS_PEO@P_C presents increased antimicrobial effects, more noticeably for Staphylococcus aureus strain, which is a key feature in preventing wound infection and delaying the healing process. It can be concluded that the developed CS/PEO-ACs NFs are very promising biomaterials for wound care, especially CS_PEO@P_C.


Subject(s)
Bandages , Biocompatible Materials , Biomimetics/methods , Chitosan , Nanofibers/therapeutic use , Polyethylene Glycols , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Line , Chitosan/chemistry , Chitosan/pharmacology , Humans , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Wound Healing/drug effects
7.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34832928

ABSTRACT

The wound-healing capacity of ointments based on bee products was investigated in vivo on three experimental models of incision, excision and heat burn. For this purpose, four ointments were prepared with propolis, honey, apilarnil (drone brood homogenate) and a mixture of these three apitherapy products. The ointments were applied topically for 21 days. Clinical and macroscopic evaluation was performed throughout the experiment, with the recording of the re-epithelialization period and determination of the wound contraction rate on days 6 and 9. The histopathological examination was performed on days 1, 3, 12 and 21 of the treatment. The topical formulations were also characterized from a rheological point of view in order to verify their stability. HPLC analysis of propolis revealed the presence of phenolic compounds, particularly ferulic acid and p-coumaric which were found in high amounts. All ointments had beneficial effects on wound contraction and the re-epithelialization period, but the most significant result, both macroscopically and especially in terms of histological architecture, was presented by the ointment that contains all three apitherapy products, due to their synergistic effect.

8.
Int J Biol Macromol ; 191: 405-413, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34547316

ABSTRACT

This study aimed to develop polysaccharide-based emulsions incorporated with lavender essential oil and their application on cellulosic support for patches obtaining. The lavender essential oil has been added to emulsions as an active compound mainly due to its antimicrobial properties. In this study, emulsions were used to deliver active ingredients (lavender essential oil). The chemical composition of essential oil was analyzed using gas chromatography-mass spectrometry (GC/MS). A total of seven emulsions (RiACL) were evaluated by determining rheological parameters and microbiological analysis. One of the emulsions (R7ACL) was applied to cellulosic support to obtain non-irritating textiles with controlled release of the active compound and moisturizing effects. Obtained cellulosic support was analyzed in terms of active compound controlled release, toxicity and antimicrobial testing, and skin analysis in healthy volunteers. It was found that the cellulosic supports treated with O/W emulsions are non-irritating, have softness and moisturizing effects, and can be used safely in topical applications for patches obtaining.


Subject(s)
Cellulose/chemistry , Lavandula/chemistry , Oils, Volatile/chemistry , Skin/drug effects , Adolescent , Adult , Aged , Anti-Infective Agents/adverse effects , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Candida albicans/drug effects , Emulsions/adverse effects , Emulsions/chemistry , Emulsions/pharmacology , Humans , Middle Aged , Staphylococcus aureus/drug effects , Textiles/standards
9.
Pharmaceuticals (Basel) ; 14(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069274

ABSTRACT

The aim of this paper was the preparation and investigation of the wound healing properties of four topical formulations based on natural polymers such as collagen, chitosan, lyophilized egg white, and a mixture of them. The therapeutic assessment of these four ointments was carried out in vivo on the incision, excision, and thermal burn wounds induced on Wistar rats. The treatment was applied topically on wounds once a day, for 21 days. The experimental results were analyzed from a clinical and histopathological point of view. The rheological characterization of the topical formulations was also performed in order to verify their spreadability and structural stability. All ointments had a positive effect on wound contraction and re-epithelization processes, but the one based on total polymers had a significant healing potential on the designed cutaneous lesions due to its synergistic effects.

10.
Carbohydr Polym ; 169: 366-375, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28504157

ABSTRACT

Mixed crosslinked networks of ionic-covalent entanglement type were prepared starting from ternary mixtures of atelocollagen (aK; as fibrillary matrix generator), sodium hyaluronate (NaHyal; a microfibrillation assistant), and oxidized polysaccharides (OxPolys; as both cross-linkers and matrix fillers), and were tested as hydrogels for eukaryotic cell encapsulation. Either oxidized gellan (GellOx) or pullulan (PullOx) were used. An original procedure and optimal hydrogel recipes were developed to encapsulate fibroblasts and adipose-derived stem cells, while preserving their viability and proliferative ability during ex vivo temporarily storage. Physical-chemical, rheological, and biocompatibility properties of the prepared hydrogels were compared against the classic alginate hydrogel used for cell encapsulation. A larger range of material characteristics (from lax to stiff) and better laboratory maneuverability were demonstrated, which permit to design appropriate compositions for particular cell types. All hydrogels undergo fast liquefaction at temperatures between 42 and 50°C, permitting the cell release after a short innocuous thermal shock.


Subject(s)
Collagen/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Polysaccharides/chemistry , Adipose Tissue/cytology , Cells, Cultured , Fibroblasts/cytology , Humans , Stem Cells/cytology
11.
Biomed Pharmacother ; 83: 485-495, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27434864

ABSTRACT

Various formulations of anise-based bioadhesive gels are prepared. Freeze-drying method was successfully employed and superporous scaffolds were obtained. The resulting porous microarchitectures are strongly influenced by the composition of hydrogel formulations and temperature of freezing. Anise-based hydrogels frozen in liquid nitrogen and lyophilized generate regular assembly of polyhedral pores. For Carbopol 934-based hydrogels it was determined G'>G'' for whole tested strain amplitude range indicating solid-like behaviour due to their dense network and entanglement and interaction through hydrogen bonds and van-der Waals forces. For sodium alginate-based hydrogels it was determined G''>G' for whole tested strain amplitude range accompanied by the extended linear viscoelastic region indicating liquid-like behaviour due to the formation of a stable "pseudo-gel" structure. Biocompatibility features of tested hydrogels were evaluated by contact angle measurements and determination of surface tension parameters. It was found that all anise-based hydrogel formulations manifest modest activity against S. aureus and S. lutea and no activity against tested Gram negative bacteria. Carbopol 934-based hydrogels containing anise exhibit antifungal activity against C. albicans, C. glabrata and C. Parapsilosis.


Subject(s)
Adhesives/pharmacology , Biocompatible Materials/pharmacology , Hydrogels/pharmacology , Pimpinella/chemistry , Vaginal Creams, Foams, and Jellies/pharmacology , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Chemistry, Pharmaceutical , Freeze Drying , Fungi/drug effects , Microbial Sensitivity Tests , Rheology/drug effects , Surface Tension/drug effects , Thermodynamics , Time Factors
12.
Mater Sci Eng C Mater Biol Appl ; 42: 243-53, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25063116

ABSTRACT

Minimal amounts of a short-chain bifunctional crosslinker of about 1.3 nm length, the 1,4-butanediol-diglycidyl ether (BDDGE), were used to generate atelocollagen-hyaluronan conjugates in hydrogel state. Two a priori constraints were considered in recipe/procedure developing: (i) working in nondenaturing conditions, and (ii) ensuring a low cytotoxicity of the final product. Both atelocollagen (aK) and hyaluronan (NaHyal) were accurately purified to reduce their molecular-weight dispersity, in order to ensure the reproducibility of hydrogels characteristics. 1:5 aK:NaHyal weight ratios and 1:2.5 to 1:5 α-NH2:BDDGE molar ratios were found to be the most favorable recipe prescriptions that allow the obtaining of rheo-mechanically stable hydrogels, able to be manipulated during cell culturing protocols. Experiments revealed two unexpected effects due to the crosslinking reactions mediated by a short-chain molecule: (i) the occurrence of two thresholds in the rheological behavior of the hydrogels, related with the amount of added crosslinker, and (ii) a quasi-denaturation side-effect induced over the protein component by large or in excess amounts of crosslinker.


Subject(s)
Collagen/chemistry , Epoxy Compounds/chemistry , Hyaluronic Acid/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Rheology , Spectrum Analysis , Temperature
13.
Beilstein J Org Chem ; 8: 1610-8, 2012.
Article in English | MEDLINE | ID: mdl-23209493

ABSTRACT

An ionic liquid based on polydimethylsiloxane with imidazolium salt brushes was synthesized as a good solvent for ß-cyclodextrin-polydimethylsiloxane rotaxane. As expected the PDMS-Im/Br ionic liquid had a liquid-like non-Newtonian behavior with rheological parameters dependent on frequency and temperature. The addition of rotaxane to the ionic liquid strengthened the non-Newtonian character of the sample and a type of stable liquid-like network was formed due to the contribution of weak ionic interactions. The structure is stable in the 20 to 80 °C domain as proved by the oscillatory and rotational rheological tests.

SELECTION OF CITATIONS
SEARCH DETAIL
...