Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 44(5): 741-51, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17915503

ABSTRACT

The effect of temperature on survival, oviposition, gonotrophic development, and a life history factor of vectorial capacity were examined in adult Culicoides sonorensis (Wirth & Jones) (Diptera: Ceratopogonidae) that originated from two geographic locations. Flies originating from the United States (Colorado) had slightly reduced survival after a bloodmeal compared with wild flies collected in southern Alberta (AB), Canada. Survival of AB flies declined in a curvilinear manner with temperature, whereas survival of U.S. flies showed a linear response to temperature. The survivorship curve of the AB flies more closely followed a Weibull distribution than an exponential, indicating survival was age-dependent. Survivorship of the U.S. flies followed an exponential distribution. Females from both sources laid similar numbers of eggs throughout their life. The first eggs were laid by females from both sources at 31.9 degree-day (DD)9.3. Dissections of blood-fed flies reared at various temperatures indicated that flies from both sources were 90% gravid at 32 DD9.3. Relationships among temperature and life history components of vectorial capacity were similar among flies from the two sources and indicated that vectorial capacity would be approximately 1.8-2.6-fold greater in a southern U.S. climate compared with southwestern Canada due solely to the effects of temperature on the life history of C. sonorensis. Using life history estimates derived from Weibull model had little effect on estimating vectorial capacity, whereas using estimates derived from the exponential model slightly overestimated vectorial capacity.


Subject(s)
Bluetongue/transmission , Ceratopogonidae/growth & development , Insect Vectors/growth & development , Temperature , Alberta , Animals , Bluetongue virus/physiology , Ceratopogonidae/virology , Colorado , Female , Geography , Insect Vectors/virology , Longevity , Male , Oviposition/physiology , Ovum/physiology , Survival Analysis , Time Factors
2.
Bull Entomol Res ; 95(6): 571-8, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16336704

ABSTRACT

Blaesoxipha atlanis (Aldrich) is a common parasitic fly of agriculturally important grasshoppers in Canada. The suitability of Camnula pellucida (Scudder), Melanoplus bivittatus (Say), Melanoplus packardii Scudder, and Melanoplus sanguinipes (Fabricius) as hosts was studied in the laboratory. Grasshoppers were singly-parasitized or left unparasitized and reared for 9 days. Melanoplus bivittatus and M. packardii did not support parasite development, i.e. were non-permissive hosts. In both species, parasite larvae were melanized and encapsulated, but development proceeded further in M. packardii. Melanoplus sanguinipes and C. pellucida were permissive host species with, respectively, 70% and 35% of the implanted larvae emerging from their hosts of which 86% and 50% developed into adults. Parasite development time was longer in C. pellucida. Adult B. atlanis dry mass varied with host species and host mass at parasitism, but not with host sex. Parasites developing in M. sanguinipes were larger in terms of dry mass than counterparts developing in C. pellucida. In permissive species, unparasitized grasshoppers gained in body mass while parasitized insects lost mass during the 9-day observation period. In non-permissive species, all insects gained in body mass, but parasitized females gained less mass than unparasitized conspecifics. All unparasitized grasshoppers survived while 75-95% of permissive and 30-40% of non-permissive hosts died. Variation in the intensity of field parasitism among grasshopper species may be explained, at least in part, by qualitative differences in suitability between potential host species. Novel pest management strategies emphasize preservation of a small proportion of the pest population for natural enemies. Consideration of the outcome of specific host-parasite interactions should improve the understanding of grasshopper population dynamics and increase the predictive value of models that assess potential crop losses.


Subject(s)
Diptera/growth & development , Grasshoppers/parasitology , Animals , Canada , Grasshoppers/growth & development , Host-Parasite Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...