Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899679

ABSTRACT

Manufacturing new electrolytes with high ionic conductivity has been a crucial challenge in the development and large-scale distribution of fuel cell devices. In this work, we present two Nafion composite membranes containing a non-stoichiometric calcium titanate perovskite (CaTiO3-δ) as a filler. These membranes are proposed as a proton exchange electrolyte for Polymer Electrolyte Membrane (PEM) fuel cell devices. More precisely, two different perovskite concentrations of 5 wt% and 10 wt%, with respect to Nafion, are considered. The structural, morphological, and chemical properties of the composite membranes are studied, revealing an inhomogeneous distribution of the filler within the polymer matrix. Direct methanol fuel cell (DMFC) tests, at 110 °C and 2 M methanol concentration, were also performed. It was observed that the membrane containing 5 wt% of the additive allows the highest cell performance in comparison to the other samples, with a maximum power density of about 70 mW cm-2 at 200 mA cm-2. Consequently, the ability of the perovskite structure to support proton carriers is here confirmed, suggesting an interesting strategy to obtain successful materials for electrochemical devices.

2.
J Phys Chem B ; 123(18): 4044-4054, 2019 May 09.
Article in English | MEDLINE | ID: mdl-30995045

ABSTRACT

Protic ionic liquids are known to form extended hydrogen-bonded networks that can lead to properties different from those encountered in the aprotic analogous liquids, in particular with respect to the structure and transport behavior. In this context, the present paper focuses on a wide series of 1-alkyl-imidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [HC nIm][TFSI], with the alkyl chain length ( n) on the imidazolium cation varying from ethyl ( n = 2) to dodecyl ( n = 12). A combination of several methods, such as vibrational spectroscopy, wide-angle X-ray scattering (WAXS), broadband dielectric spectroscopy, and 1H NMR spectroscopy, is used to understand the correlation between local cation-anion coordination, nature of nanosegregation, and transport properties. The results indicate the propensity of the -NH site on the cation to form stronger H-bonds with the anion as the alkyl chain length increases. In addition, the position and width of the scattering peak q1 (or the pre-peak), resolved by WAXS and due to the nanosegregation of the polar from the nonpolar domains, are clearly dependent on the alkyl chain length. However, we find no evidence from pulsed-field gradient NMR of a proton motion decoupled from molecular diffusion, hypothesized to be facilitated by the longer N-H bonds localized in the segregated ionic domains. Finally, for all protic ionic liquids investigated, the ionic conductivity displays a Vogel-Fulcher-Tammann dependence on inverse temperature, with an activation energy Ea that also depends on the alkyl chain length, although not strictly linearly.

SELECTION OF CITATIONS
SEARCH DETAIL
...