Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 452(7190): 949-55, 2008 Apr 24.
Article in English | MEDLINE | ID: mdl-18362917

ABSTRACT

Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.


Subject(s)
Genes, Insect/genetics , Genome, Insect/genetics , Tribolium/genetics , Animals , Base Composition , Body Patterning/genetics , Cytochrome P-450 Enzyme System/genetics , DNA Transposable Elements/genetics , Growth and Development/genetics , Humans , Insecticides/pharmacology , Neurotransmitter Agents/genetics , Oogenesis/genetics , Phylogeny , Proteome/genetics , RNA Interference , Receptors, G-Protein-Coupled/genetics , Receptors, Odorant/genetics , Repetitive Sequences, Nucleic Acid/genetics , Taste/genetics , Telomere/genetics , Tribolium/classification , Tribolium/embryology , Tribolium/physiology , Vision, Ocular/genetics
2.
Science ; 316(5822): 222-34, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17431167

ABSTRACT

The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.


Subject(s)
Evolution, Molecular , Genome , Macaca mulatta/genetics , Animals , Biomedical Research , Female , Gene Duplication , Gene Rearrangement , Genetic Diseases, Inborn , Genetic Variation , Humans , Male , Multigene Family , Mutation , Pan troglodytes/genetics , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...