Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 22312-22325, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38651800

ABSTRACT

Light-element-based fluorescent materials, colloidal graphene quantum dots, and carbon dots (CDs) have sparked an immense amount of scientific interest in the past decade. However, a significant challenge in practical applications has emerged concerning the development of solid-state fluorescence (SSF) materials. This study addresses this knowledge gap by exploring the unexplored photonic facets of C-based solid-state microphotonic emitters. The proposed synthesis approach focuses on carbonized polymer microspheres (CPMs) instead of conventional nanodots. These microspheres exhibit remarkable SSF spanning the entire visible spectrum from blue to red. The highly spherical shape of CPMs imparts built-in photonic properties in addition to its intrinsic CD-based attributes. Leveraging their excitation-dependent photoluminescence property, these microspheres exhibit amplified spontaneous emission, assisted by the whispering gallery mode resonance across the visible spectral region. Remarkably, unlike conventional semiconductor quantum dots or dye-doped microresonators, this single microstructure showcases adaptable resonant emission without structural/chemical modifications. This distinctive attribute enables a plethora of applications, including microcavity-assisted energy transfer for white light emission, highly sensitive chemical sensing, and secure encrypted anticounterfeiting measures. This interdisciplinary approach, integrating photonics and chemistry, provides a robust solution for light-element-based SSF with inherent photonic functionality and wide-ranging applications.

2.
Sensors (Basel) ; 22(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35458953

ABSTRACT

In this work, we present and analyze a design of an absorber-waveguide system combining a highly sensitive waveguide array concept with a resonant selective absorber. The waveguide part is composed of an array of coupled strip waveguides and is therefore called a coupled strip array (CSA). The CSA is then coupled to the end of a slab Tamm plasmon (STP-) resonator, which is composed of a quasicrystal-like reflector formed by the patterning of a silicon slab and an interfacing tungsten slab. The concept describes an emitter-waveguide or waveguide-detector system featuring selective plasmon-enhanced resonant absorption or emission. These are crucial properties for corresponding optical on-chip integrated devices in context with evanescent field absorption sensing in fluids or gases, for example. Thus, the concept comprises a valuable and more cost-effective alternative to quantum cascade lasers. We designed the lateral dimensions of the STP resonator via a simple quasi-crystal approach and achieved strong narrowband resonances (emittance and Q-factors up to 85% and 88, respectively) for different silicon thicknesses and substrate materials (air and silicon oxide). Moreover, we analyze and discuss the sensitivity of the complete emitter-waveguide system in dependence on the slab thickness. This reveals the crucial correlation between the expected sensitivity assigned to the absorber-waveguide system and field confinement within the silicon.

3.
Sensors (Basel) ; 21(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34770299

ABSTRACT

In this study, we investigate the potential of one-dimensional plasmonic grating structures to serve as a platform for, e.g., sensitive refractive index sensing. This is achieved by comparing numerical simulations to experimental results with respect to the excitation of surface plasmon polaritons (SPPs) in the mid-infrared region. The samples, silver-coated poly-silicon gratings, cover different grating depths in the range of 50 nm-375 nm. This variation of the depth, at a fixed grating geometry, allows the active tuning of the bandwidth of the SPP resonance according to the requirements of particular applications. The experimental setup employs a tunable quantum cascade laser (QCL) and allows the retrieval of angle-resolved experimental wavelength spectra to characterize the wavelength and angle dependence of the SPP resonance of the specular reflectance. The experimental results are in good agreement with the simulations. As a tendency, shallower gratings reveal narrower SPP resonances in reflection. In particular, we report on 2.9 nm full width at half maximum (FWHM) at a wavelength of 4.12 µm and a signal attenuation of 21%. According to a numerical investigation with respect to a change of the refractive index of the dielectric above the grating structure, a spectral shift of 4122nmRIU can be expected, which translates to a figure of merit (FOM) of about 1421 RIU-1. The fabrication of the suggested structures is performed on eight-inch silicon substrates, entirely accomplished within an industrial fabrication environment using standard microfabrication processes. This in turn represents a decisive step towards plasmonic sensor technologies suitable for semiconductor mass-production.

4.
Micromachines (Basel) ; 11(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878232

ABSTRACT

Among conductive oxide materials, niobium doped titanium dioxide has recently emerged as a stimulating and promising contestant for numerous applications. With carrier concentration tunability, high thermal stability, mechanical and environmental robustness, this is a material-of-choice for infrared plasmonics, which can substitute indium tin oxide (ITO). In this report, to illustrate great advantages of this material, we describe successful fabrication and characterization of niobium doped titanium oxide nanoantenna arrays aiming at surface-enhanced infrared absorption spectroscopy. The niobium doped titanium oxide film was deposited with co-sputtering method. Then the nanopatterned arrays were prepared by electron beam lithography combined with plasma etching and oxygen plasma ashing processes. The relative transmittance of the nanostrip and nanodisk antenna arrays was evaluated with Fourier transform infrared spectroscopy. Polarization dependence of surface plasmon resonances on incident light was examined confirming good agreements with calculations. Simulated spectra also present red-shift as length, width or diameter of the nanostructures increase, as predicted by classical antenna theory.

5.
Adv Sci (Weinh) ; 6(20): 1900579, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31637158

ABSTRACT

Merging photonic structures and optoelectronic sensors into a single chip may yield a sensor-on-chip spectroscopic device that can measure the spectrum of matter. In this work, an on-chip concurrent multiwavelength infrared (IR) sensor, which consists of a set of narrowband wavelength-selective plasmonic perfect absorbers combined with pyroelectric sensors, where the response of each pyroelectric sensor is boosted only at the resonance of the nanostructured absorber, is proposed and realized. The proposed absorber, which is based on Wood's anomaly absorption from a 2D plasmonic square lattice, shows a narrowband polarization-independent resonance (quality factor - Q of 73) with a nearly perfect absorptivity as high as 0.99 at normal incidence. The fabricated quad-wavelength IR sensors exhibit four different narrowband spectral responses at normal incidence following the predesigned resonances in the mid-wavelength infrared region that corresponds to the atmospheric window. The device can be applied for practical spectroscopic applications such as nondispersive IR sensors, IR chemical imaging devices, pyrometers, and spectroscopic thermography imaging.

6.
Micromachines (Basel) ; 10(7)2019 Jul 13.
Article in English | MEDLINE | ID: mdl-31337078

ABSTRACT

On the search for the practical plasmonic materials beyond noble metals, aluminum has been emerging as a favorable candidate as it is abundant and offers the possibility of tailoring the plasmonic resonance spanning from ultra-violet to the infrared range. In this letter, in combination with the numerical electromagnetic simulations, we experimentally study the dark-field scattering spectral mapping of plasmonic resonance from the free-standing Al bowtie antenna arrays and correlate their strong nearfield enhancement with the sensing capability by means of surface-enhanced Raman spectroscopy. The spatial matching of plasmonic and Raman mapping puts another step to realize a very promising application of free-standing Al bowtie antennas for plasmonic sensing.

7.
Micromachines (Basel) ; 10(6)2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31234295

ABSTRACT

Spectrally selective detection is of crucial importance for diverse modern spectroscopic applications such as multi-wavelength pyrometry, non-dispersive infrared gas sensing, biomedical analysis, flame detection, and thermal imaging. This paper reports a quad-wavelength hybrid plasmonic-pyroelectric detector that exhibited spectrally selective infrared detection at four wavelengths-3.3, 3.7, 4.1, and 4.5 µm. The narrowband detection was achieved by coupling the incident infrared light to the resonant modes of the four different plasmonic perfect absorbers based on Al-disk-array placed on a Al2O3-Al bilayer. These absorbers were directly integrated on top of a zinc oxide thin film functioning as a pyroelectric transducer. The device was fabricated using micro-electromechanical system (MEMS) technology to optimize the spectral responsivity. The proposed detector operated at room temperature and exhibited a responsivity of approximately 100-140 mV/W with a full width at half maximum of about 0.9-1.2 µm. The wavelength tunability, high spectral resolution, compactness and robust MEMS-based platform of the hybrid device demonstrated a great advantage over conventional photodetectors with bandpass filters, and exhibited impressive possibilities for miniature multi-wavelength spectroscopic devices.

8.
Micromachines (Basel) ; 10(6)2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31234373

ABSTRACT

We propose and experimentally demonstrate a compact design for membrane-supported wavelength-selective infrared (IR) bolometers. The proposed bolometer device is composed of wavelength-selective absorbers functioning as the efficient spectroscopic IR light-to-heat transducers that make the amorphous silicon (a-Si) bolometers respond at the desired resonance wavelengths. The proposed devices with specific resonances are first numerically simulated to obtain the optimal geometrical parameters and then experimentally realized. The fabricated devices exhibit a wide resonance tunability in the mid-wavelength IR atmospheric window by changing the size of the resonator of the devices. The measured spectral response of the fabricated device wholly follows the pre-designed resonance, which obviously evidences that the concept of the proposed wavelength-selective IR bolometers is realizable. The results obtained in this work provide a new solution for on-chip MEMS-based wavelength-selective a-Si bolometers for practical applications in IR spectroscopic devices.

9.
Opt Express ; 27(12): A725-A737, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31252849

ABSTRACT

Ultra-narrowband perfect absorbers and emitters are proposed and realized by engineering multiple-beam interference in Gires-Tournois etalon with the presence of low metallic loss. The absorption mechanism and spectral characteristics of the Gires-Tournois resonators are numerically and experimentally investigated for three configurations: dielectric cavity on metal, metal-dielectric-metal resonator, and distributed Bragg reflector (DBR)-dielectric-metal resonator. Narrowband thermal emitters based on the metal-dielectric-metal cavity and (DBR)-dielectric-metal cavity are experimentally demonstrated with an emissivity of 0.8 and 0.82, and a quality factor of 21 and 85, respectively. A DBR-dielectric-metal resonator-based absorber is directly loaded onto a LiTaO 3 film for the first time to constitute an on-chip ultra-narrowband pyroelectric detector with an excellent quality factor of 151 at the absorption band of methane.

10.
Nanoscale ; 11(19): 9508-9517, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31049510

ABSTRACT

We propose antenna-enhanced infrared vibrational spectroscopy by adopting single-sized Al disks on Al2O3-Al films fabricated by colloidal-mask lithography. The precisely designed plasmonic resonator with dual-band perfect absorption (DPA) shows strongly-enhanced nearfield intensity and polarization independence, at both resonances, providing a powerful antenna platform for the multi-band vibrational sensing. As a proof of concept, we experimentally apply the plasmonic DPAs in bond-selective dual-band infrared sensing of an ultrathin polydimethylsiloxane (PDMS) film, simultaneously amplifying two representative vibrational bands (asymmetric C-H stretching of CH3 at 2962 cm-1 and CH3 deformation of Si-CH3 at 1263 cm-1) by surface-enhanced infrared absorption spectroscopy (SEIRA). The plasmonic DPA was successfully adopted for the in situ monitoring of reaction kinetics, by recording the spectral changes in C-H stretching and Si-CH3 deformation modes of a 10 nm PDMS elastomer, which are selectively enhanced by the two antenna resonances, during its gelation process. Our systematic study of the SEIRA spectra has demonstrated mode splitting and a clear avoided-crossing in the dispersion curve as a function of resonance frequency of DPA, manifesting itself as a promising basis for future polaritonic devices utilizing the hybridization between the molecular vibrational states and the enhanced light field.

11.
ACS Appl Mater Interfaces ; 10(3): 2460-2468, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29271188

ABSTRACT

In this work, a promising strategy to increase the broadband solar light absorption was developed by synthesizing a composite of metal-free carbon nitride-carbon dots (C3N4-C dots) and plasmonic titanium nitride (TiN) nanoparticles (NPs) to improve the photoelectrochemical water-splitting performance under simulated solar radiation. Hot-electron injection from plasmonic TiN NPs to C3N4 played a role in photocatalysis, whereas C dots acted as catalysts for the decomposition of H2O2 to O2. The use of C dots also eliminated the need for a sacrificial reagent and prevented catalytic poisoning. By incorporating the TiN NPs and C dots, a sixfold improvement in the catalytic performance of C3N4 was observed. The proposed approach of combining TiN NPs and C dots with C3N4 proved effective in overcoming low optical absorption and charge recombination losses and also widens the spectral window, leading to improved photocatalytic activity.

12.
ACS Appl Mater Interfaces ; 10(1): 408-416, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29226665

ABSTRACT

Photocatalytic reduction of carbon dioxide (CO2) is attractive for the production of valuable fuels and mitigating the influence of greenhouse gas emission. However, the extreme inertness of CO2 and the sluggish kinetics of photoexcited charge carrier transfer process greatly limit the conversion efficiency of CO2 photoreduction. Herein, we report that the plasmonic coupling effect of Pt and Au nanoparticles (NPs) profoundly enhances the efficiency of CO2 reduction through dry reforming of methane reaction assisted by light illumination, reducing activation energies for CO2 reduction ∼30% below thermal activation energies and achieving a reaction rate 2.4 times higher than that of the thermocatalytic reaction. UV-visible (vis) absorption spectra and wavelength-dependent performances show that not only UV but also visible light play important roles in promoting CO2 reduction due to effective localized surface plasmon resonance (LSPR) coupling between Pt and Au NPs. Finite-difference time-domain simulations and in situ diffuse reflectance infrared Fourier transform spectroscopy further reveal that effective coupling LSPR effect generates strong local electric fields and excites high concentration of hot electrons to activate the reactants and intermediate species, reduce the activation energies, and increase the reaction rate. This work provides a new pathway toward the efficient plasmon-enhanced chemical reactions via reducing the activation energies by utilizing solar energy.

13.
Nanoscale ; 9(43): 16950-16959, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29077124

ABSTRACT

The optical hybridization of localized surface plasmons and photonic modes of dielectric nanostructures provides us wide arenas of opportunities for designing tunable nanophotonics with excellent spectral selectivity, signal enhancement, and light harvesting for many optical applications. Graphene-supported Au nanoprisms on a periodic Si nanopillar array will be an ideal model system for examining such an optical hybridization effect between plasmonic modes and photonic modes. Here, through the measurement of the reflectance spectra as well as graphene phonons by surface-enhanced Raman scattering (SERS), we investigated both the far-field and near-field properties of these optically hybridized modes. The effects of photonic modes and Mie resonances of the Si nanopillars on the localized surface plasmons of the Au nanoprisms and on their near-field enhancement were experimentally elucidated through the measurements of graphene phonons using two excitation lasers with wavelengths of 532 and 785 nm. The wavelength-dependent SERS intensities of monolayer graphene are clearly understood in terms of the optical hybridization, and the SERS enhancement factor estimated from finite-difference time-domain simulations exhibited good agreement with the measurements. The elucidated spectral tunability in the near-field light-matter interaction would be useful for potential applications in various types of graphene-based photonics.

14.
Opt Lett ; 41(19): 4453-4456, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27749853

ABSTRACT

Selective thermal emissions from the excitation of Tamm plasmon polaritons (TPPs) are demonstrated. A TPP structure is composed of a distributed Bragg reflector (DBR) and a thin metal film on top. The tunability of the thermal emission was experimentally achieved only by changing the DBR's photonic bandgap. Low cost and large area selective thermal emitters can be realized by TPP-based structures.

15.
ACS Nano ; 10(7): 7058-63, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27348045

ABSTRACT

Color-tunable resonant photoluminescence (PL) was attained from polystyrene microspheres doped with a single polymorphic fluorescent dye, boron-dipyrrin (BODIPY) 1. The color of the resonant PL depends on the assembling morphology of 1 in the microspheres, which can be selectively controlled from green to red by the initial concentration of 1 in the preparation process of the microspheres. Studies on intersphere PL propagation with multicoupled microspheres, prepared by micromanipulation technique, revealed that multistep photon transfer takes place through the microspheres, accompanying energy transfer cascade with stepwise PL color change. The intersphere energy transfer cascade is direction selective, where energy donor-to-acceptor down conversion direction is only allowed. Such cavity-mediated long-distance and multistep energy transfer will be advantageous for polymer photonics device application.

16.
ACS Nano ; 10(5): 5543-9, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27135760

ABSTRACT

Highly luminescent π-conjugated polymeric microspheres were fabricated through self-assembly of energy-donating and energy-accepting polymers and their blends. To avoid macroscopic phase separation, the nucleation time and growth rate of each polymer in the solution were properly adjusted. Photoluminescence (PL) studies showed that efficient donor-to-acceptor energy transfer takes place inside the microspheres, revealing that two polymers are well-blended in the microspheres. Focused laser irradiation of a single microsphere excites whispering gallery modes (WGMs), where PL generated inside the sphere is confined and resonates. The wavelengths of the PL lines are finely tuned by changing the blending ratio, accompanying the systematic yellow-to-red color change. Furthermore, when several microspheres are coupled linearly, the confined PL propagates the microspheres through the contact point, and a cascade-like process converts the PL color while maintaining the WGM characteristics. The self-assembly strategy for the formation of polymeric nano- to microstructures with highly miscible polymer blends will be advantageous for optoelectronic and photonic device applications.

17.
Adv Mater ; 28(19): 3703-10, 2016 May.
Article in English | MEDLINE | ID: mdl-27001900

ABSTRACT

Highly efficient utilization of solar light with an excellent reduction capacity is achieved for plasmonic Fe@C nanostructures. By carbon layer coating, the optimized catalyst exhibits enhanced selectivity and stability applied to the solar-driven reduction of CO2 into CO. The surface-plasmon effect of iron particles is proposed to excite CO2 molecules, and thereby facilitates the final reaction activity.

18.
Sci Rep ; 5: 15870, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26522668

ABSTRACT

Dirac-like electrons in solid state have been of great interest since they exhibit many peculiar physical behaviors analogous to relativistic mechanics. Among them, carriers in graphene and surface states of topological insulators are known to behave as massless Dirac fermions with a conical band structure in the two-dimensional momentum space, whereas electrons in semimetal bismuth (Bi) are expected to behave as massive Dirac-like fermions in the three-dimensional momentum space, whose dynamics is of particular interest in comparison with that of the massless Dirac fermions. Here, we demonstrate that an intense terahertz electric field transient accelerates the massive Dirac-like fermions in Bi from classical Newtonian to the relativistic regime; the electrons are accelerated approaching the effective "speed of light" with the "relativistic" beta ß = 0.89 along the asymptotic linear band structure. As a result, the effective electron mass is enhanced by a factor of 2.4.

19.
Angew Chem Int Ed Engl ; 54(39): 11545-9, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26271348

ABSTRACT

A novel CO2 photoreduction method, CO2 conversion through methane reforming into syngas (DRM) was adopted as an efficient approach to not only reduce the environmental concentration of the greenhouse gas CO2 but also realize the net energy storage from solar energy to chemical energy. For the first time it is reported that gold, which was generally regarded to be inactive in improving the performance of a catalyst in DRM under thermal conditions, enhanced the catalytic performance of Rh/SBA-15 in DRM under visible-light irradiation (1.7 times, CO2 conversion increased from 2100 to 3600 µmol g(-1) s(-1)). UV/Vis spectra and electromagnetic field simulation results revealed that the highly energetic electrons excited by local surface plasmon resonances of Au facilitated the polarization and activation of CO2 and CH4 with thermal assistance. This work provides a new route for CO2 photoreduction and offers a distinctive method to photocatalytically activate nonpolar molecules.

20.
ACS Nano ; 9(6): 6031-40, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26022616

ABSTRACT

We have developed moiré nanosphere lithography (M-NSL), which incorporates in-plane rotation between neighboring monolayers, to extend the patterning capability of conventional nanosphere lithography (NSL). NSL, which uses self-assembled layers of monodisperse micro/nanospheres as masks, is a low-cost, scalable nanofabrication technique and has been widely employed to fabricate various nanoparticle arrays. Combination with dry etching and/or angled deposition has greatly enriched the family of nanoparticles NSL can yield. In this work, we introduce a variant of this technique, which uses sequential stacking of polystyrene nanosphere monolayers to form a bilayer crystal instead of conventional spontaneous self-assembly. Sequential stacking leads to the formation of moiré patterns other than the usually observed thermodynamically stable configurations. Subsequent O2 plasma etching results in a variety of complex nanostructures. Using the etched moiré patterns as masks, we have fabricated complementary gold nanostructures and studied their optical properties. We believe this facile technique provides a strategy to fabricate complex nanostructures or metasurfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...