Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 18(9)2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30223542

ABSTRACT

The paper presents an ultra-high-speed image sensor for motion pictures of reproducible events emitting very weak light. The sensor is backside-illuminated. Each pixel is equipped with multiple collection gates (MCG) at the center of the front side. Each collection gate is connected to an in-pixel large memory unit, which can accumulate image signals captured by repetitive imaging. The combination of the backside illumination, image signal accumulation, and slow readout from the in-pixel signal storage after an image capturing operation offers a very high sensitivity. Pipeline signal transfer from the the multiple collection gates (MCG) to the in-pixel memory units enables the sensor to achieve a large frame count and a very high frame rate at the same time. A test sensor was fabricated with a pixel count of 32 × 32 pixels. Each pixel is equipped with four collection gates, each connected to a memory unit with 305 elements; thus, with a total frame count of 1220 (305 × 4) frames. The test camera achieved 25 Mfps, while the sensor was designed to operate at 50 Mfps.

2.
Sensors (Basel) ; 18(8)2018 Jul 24.
Article in English | MEDLINE | ID: mdl-30042368

ABSTRACT

The paper summarizes the evolution of the Backside-Illuminated Multi-Collection-Gate (BSI MCG) image sensors from the proposed fundamental structure to the development of a practical ultimate-high-speed silicon image sensor. A test chip of the BSI MCG image sensor achieves the temporal resolution of 10 ns. The authors have derived the expression of the temporal resolution limit of photoelectron conversion layers. For silicon image sensors, the limit is 11.1 ps. By considering the theoretical derivation, a high-speed image sensor designed can achieve the frame rate close to the theoretical limit. However, some of the conditions conflict with performance indices other than the frame rate, such as sensitivity and crosstalk. After adjusting these trade-offs, a simple pixel model of the image sensor is designed and evaluated by simulations. The results reveal that the sensor can achieve a temporal resolution of 50 ps with the existing technology.

3.
Sensors (Basel) ; 10(1): 16-35, 2010.
Article in English | MEDLINE | ID: mdl-22315524

ABSTRACT

Our experience in the design of an ultra-high speed image sensor targeting the theoretical maximum frame rate is summarized. The imager is the backside illuminated in situ storage image sensor (BSI ISIS). It is confirmed that the critical factor limiting the highest frame rate is the signal electron transit time from the generation layer at the back side of each pixel to the input gate to the in situ storage area on the front side. The theoretical maximum frame rate is estimated at 100 Mega-frames per second (Mfps) by transient simulation study. The sensor has a spatial resolution of 140,800 pixels with 126 linear storage elements installed in each pixel. The very high sensitivity is ensured by application of backside illumination technology and cooling. The ultra-high frame rate is achieved by the in situ storage image sensor (ISIS) structure on the front side. In this paper, we summarize technologies developed to achieve the theoretical maximum frame rate, including: (1) a special p-well design by triple injections to generate a smooth electric field backside towards the collection gate on the front side, resulting in much shorter electron transit time; (2) design technique to reduce RC delay by employing an extra metal layer exclusively to electrodes responsible for ultra-high speed image capturing; (3) a CCD specific complementary on-chip inductance minimization technique with a couple of stacked differential bus lines.


Subject(s)
Image Enhancement/instrumentation , Photography/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...