Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 30(49): 11521-9, 1991 Dec 10.
Article in English | MEDLINE | ID: mdl-1747370

ABSTRACT

To determine the energetic and structural consequences of placing a charged group within the core of a protein, two "buried charge" mutants, Met 102----Lys (M102K) and Leu 133----Asp (L133D) were constructed in phage T4 lysozyme. Both proteins fold at neutral pH, although they are substantially less stable than wild type. The activity of M102K is about 35% that of wild type, while that of L133D is about 4%. M102K could be crystallized, and its structure was determined at high resolution. The crystal structure (at pH 6.8) of the mutant is very similar to that of wild type except for the alpha-helix that includes residues 108-113. In wild-type lysozyme, one side of this helix is exposed to solvent and the other contacts Met 102. In the M102K structure this alpha-helix becomes much more mobile, possibly allowing partial access of Lys 102 to solvent. The stability of M102K, determined by monitoring the unfolding of the protein with CD, is pH-dependent, consistent with the charged form of the substituted amino acid being more destabilizing than the uncharged form. The pKa of Lys 102 was estimated to be 6.5 both by differential titration and also by NMR analysis of isotopically labeled protein with 13C incorporated at the C epsilon position of all lysines. As the pH is lowered below pH 6.5, the overall three-dimensional structure of M102K at room temperature appears to be maintained to pH 3 or so, although there is evidence for some structural adjustment possibly allowing solvent accessibility to the protonated form of Lys 102.


Subject(s)
Muramidase/chemistry , T-Phages/enzymology , Thermodynamics , Amino Acid Sequence , Catalysis , Enzyme Stability , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Muramidase/genetics , Mutagenesis, Site-Directed , Protein Conformation , Structure-Activity Relationship , X-Ray Diffraction
2.
Biochemistry ; 30(41): 9816-28, 1991 Oct 15.
Article in English | MEDLINE | ID: mdl-1911773

ABSTRACT

It was shown previously that the introduction of a negatively charged amino acid at the N-terminus of an alpha-helix could increase the thermostability of phage T4 lysozyme via an electrostatic interaction with the "helix dipole" [Nicholson, H., Becktel, W. J., & Matthews, B. W. (1988) Nature 336, 651-656]. The prior report focused on the two stabilizing substitutions Ser 38----Asp (S38D) and Asn 144----Asp (N144D). Two additional examples of stabilizing mutants, T109D and N116D, are presented here. Both show the pH-dependent increase in thermal stability expected for the interaction of an aspartic acid with an alpha-helix dipole. Control mutants were also constructed to further characterize the nature of the interaction with the alpha-helix dipole. High-resolution crystal structure analysis was used to determine the nature of the interaction of the substituted amino acids with the end of the alpha-helix in both the primary and the control mutants. Control mutant S38N has stability essentially the same as that of wild-type lysozyme but hydrogen bonding similar to that of the stabilizing mutant S38D. This confirms that it is the electrostatic interaction between Asp 38 and the helix dipole, rather than a change in hydrogen-bonding geometry, that gives enhanced stability. Structural and thermodynamic analysis of mutant T109N provide a similar control for the stabilizing replacement T109D. In the case of mutant N116D, there was concern that the enhanced stability might be due to a favorable salt-bridge interaction between the introduced aspartate and Arg 119, rather than an interaction with the alpha-helix dipole. The additivity of the stabilities of N116D and R119M seen in the double mutant N116D/R119M indicates that favorable interactions are largely independent of residue 119. As a further control, Asp 92, a presumed helix-stabilizing residue in wild-type lysozyme, was replaced with Asn. This decreased the stability of the protein in the manner expected for the loss of a favorable helix dipole interaction. In total, five mutations have been identified that increase the thermostability of T4 lysozyme and appear to do so by favorable interactions with alpha-helix dipoles. As measured by the pH dependence of stability, the strength of the electrostatic interaction between the charged groups studied here and the helix dipole ranges from 0.6 to 1.3 kcal/mol in 150 mM KCl. In the case of mutants S38D and N144H, NMR titration was used to measure the pKa's of Asp 38 and His 144 in the folded structures.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Muramidase/genetics , Mutagenesis, Site-Directed , T-Phages/enzymology , Amino Acid Sequence , Asparagine/genetics , Aspartic Acid/genetics , Enzyme Stability , Hot Temperature , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Protein Conformation , Thermodynamics , X-Ray Diffraction
3.
J Mol Biol ; 221(3): 873-87, 1991 Oct 05.
Article in English | MEDLINE | ID: mdl-1942034

ABSTRACT

Bacteriophage T4 lysozyme is a basic molecule with an isoelectric point above 9.0, and an excess of nine positive charges at neutral pH. It might be expected that it would be energetically costly to bring these out-of-balance charges from the extended, unfolded, form of the protein into the compact folded state. To determine the contribution of such long-range electrostatic interactions to the stability of the protein, five positively charged surface residues, Lys16, Arg119, Lys135, Lys147 and Arg154, were individually replaced with glutamic acid. Eight selected double, triple and quadruple mutants were also constructed so as to sequentially reduce the out-of-balance formal charge on the molecule from +9 to +1 units. Each of the five single variant proteins was crystallized and high-resolution X-ray analysis confirmed that each mutant structure was, in general, very similar to the wild-type. In the case of R154E, however, the Arg154 to Glu replacement caused a rearrangement in which Asp127 replaced Glu128 as the capping residue of a nearby alpha-helix. The thermal stabilities of all 13 variant proteins were found to be fairly similar, ranging from 0.5 kcal/mol more stable than wild-type to 1.7 kcal/mol less stable than wild-type. In the case of the five single charge-change variants, for which the structures were determined, the changes in stability can be rationalized in terms of changes in local interactions at the site of the replacement. There is no evidence that the reduction in the out-of-balance charge on the molecule increases the stability of the folded relative to the unfolded form, either at pH 2.8 or at pH 5.3. This indicates that long-range electrostatic interactions between the substituted amino acid residues and other charged groups on the surface of the molecule are weak or non-existent. Furthermore, the relative stabilities of the multiple charge replacement mutant proteins were found to be almost exactly equal to the sums of the relative stabilities of the constituent single mutant proteins. This also clearly indicates that the electrostatic interactions between the replaced charges are negligibly small. The activities of the charge-change mutant lysozymes, as measured by the rate of hydrolysis of cell wall suspensions, are essentially equal to that of the wild-type lysozyme, but on a lysoplate assay the mutant enzymes appear to have higher activity.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Muramidase/chemistry , T-Phages/enzymology , Arginine/chemistry , Electrochemistry , Enzyme Stability , Hydrogen Bonding , Lysine/chemistry , Models, Molecular , Muramidase/genetics , Muramidase/metabolism , Mutagenesis, Site-Directed , T-Phages/genetics , Temperature , X-Ray Diffraction
4.
Ciba Found Symp ; 161: 52-62, 1991.
Article in English | MEDLINE | ID: mdl-1814696

ABSTRACT

The lysozyme from bacteriophage T4 is being used as a model system to determine the roles of individual amino acids in the folding and stability of a typical globular protein. Such studies can provide quantitative information on the contributions made by different types of interactions including hydrogen bonds, hydrophobic interactions, salt bridges and disulphide bridges. To determine the contribution of long-range electrostatic interactions a combination of charge-change mutations was used to reduce the overall formal charge on T4 lysozyme at neutral pH from +9 to +1 units. Such changes in charge were found to have little effect on the stability of the molecule. Salt bridges engineered on the surface of the protein also were found to contribute little to stability. In contrast, the introduction of acidic groups designed to interact with the partial positive charges at the N-termini of alpha-helices consistently increased the stability of the protein. It is argued that this difference between electrostatic salt-bridge interactions and electrostatic 'helix-dipole' interactions lies in the entropic cost of bringing together the interacting partners. In an attempt to simplify the folding problem, and also to further investigate the helix propensity of different amino acids, a series of alanines was introduced within an alpha-helix of T4 lysozyme. The resultant protein not only folds normally but is also more stable than the wild-type enzyme, adding further support to recent evidence that alanine is a helix-favouring amino acid.


Subject(s)
Muramidase/chemistry , T-Phages/enzymology , Electricity , Enzyme Stability , Models, Chemical , Models, Molecular , Muramidase/genetics , Mutation/genetics , Protein Conformation , Surface Properties , T-Phages/genetics
5.
Proteins ; 7(2): 198-204, 1990.
Article in English | MEDLINE | ID: mdl-2326253

ABSTRACT

An attempt has been made to identify residues in T4 phage lysozyme that may have strained conformations and, by appropriate site-directed replacements, to reduce this strain and thus increase the thermostability of the protein. Valine 131, within alpha-helix 126-134, was identified as a potential candidate. Its side-chain rotational angle, chi 1, differs by approximately 18 degrees from the low-energy trans configuration. In addition, it is largely solvent exposed, yet is held in a rigid conformation. The mutant protein with Val 131 replaced by alanine was constructed and found to have a melting temperature 0.9 degrees C higher than that of wild-type lysozyme at pH 2.8. As a control, the mutant Val 131----Thr was also constructed and its melting temperature was found to be marginally lower than wild type. High-resolution crystal structure determinations of the mutant lysozymes show that their structures are virtually identical with that of wild-type lysozyme, except for the Val----Ala or Val----Thr replacement. Analysis of the different structures suggests that the design of the Val----Ala substitution was, in principle, successful, although the apparent gain in stability caused by reduction in strain is modest and is somewhat offset by the loss of hydrophobic interactions and by entropic effects. The results also help to provide a structural rationalization for the experimental and empirical observations that alanine has a higher helix propensity than valine or threonine.


Subject(s)
Muramidase/genetics , T-Phages/enzymology , Viral Proteins/genetics , Amino Acid Sequence , Hot Temperature , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Engineering , Stress, Mechanical , T-Phages/genetics , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...