Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 11861, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34088912

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a complex metabolic disease of heterogeneous and multifactorial pathogenesis that may benefit from coordinated multitargeted interventions. Endogenous metabolic modulators (EMMs) encompass a broad set of molecular families, including amino acids and related metabolites and precursors. EMMs often serve as master regulators and signaling agents for metabolic pathways throughout the body and hold the potential to impact a complex metabolic disease like NASH by targeting a multitude of pathologically relevant biologies. Here, we describe a study of a novel EMM composition comprising five amino acids and an amino acid derivative (Leucine, Isoleucine, Valine, Arginine, Glutamine, and N-acetylcysteine [LIVRQNac]) and its systematic evaluation across multiple NASH-relevant primary human cell model systems, including hepatocytes, macrophages, and stellate cells. In these model systems, LIVRQNac consistently and simultaneously impacted biology associated with all three core pathophysiological features of NASH-metabolic, inflammatory, and fibrotic. Importantly, it was observed that while the individual constituent amino acids in LIVRQNac can impact specific NASH-related phenotypes in select cell systems, the complete combination was necessary to impact the range of disease-associated drivers examined. These findings highlight the potential of specific and potent multitargeted amino acid combinations for the treatment of NASH.


Subject(s)
Cell Culture Techniques , Fibrosis/metabolism , Inflammation/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Alanine Transaminase/metabolism , Biomarkers/metabolism , Collagen/chemistry , Hepatocytes/metabolism , Humans , In Vitro Techniques , Liver/metabolism , Liver Cirrhosis/pathology , Liver Diseases/metabolism , Macrophages/metabolism , Phenotype , Signal Transduction
2.
Mol Microbiol ; 111(6): 1671-1688, 2019 06.
Article in English | MEDLINE | ID: mdl-30882947

ABSTRACT

For the human pathogen Clostridioides (also known as Clostridium) difficile, the ability to adapt to nutrient availability is critical for its proliferation and production of toxins during infection. Synthesis of the toxins is regulated by the availability of certain carbon sources, fermentation products and amino acids (e.g. proline, cysteine, isoleucine, leucine and valine). The effect of proline is attributable at least in part to its role as an inducer and substrate of D-proline reductase (PR), a Stickland reaction that regenerates NAD+ from NADH. Many Clostridium spp. use Stickland metabolism (co-fermentation of pairs of amino acids) to generate ATP and NAD+ . Synthesis of PR is activated by PrdR, a proline-responsive regulatory protein. Here we report that PrdR, in the presence of proline, represses other NAD+ -generating pathways, such as the glycine reductase and succinate-acetyl CoA utilization pathways leading to butyrate production, but does so indirectly by affecting the activity of Rex, a global redox-sensing regulator that responds to the NAD+ /NADH ratio. Our results indicate that PR activity is the favored mechanism for NAD+ regeneration and that both Rex and PrdR influence toxin production. Using the hamster model of C. difficile infection, we revealed the importance of PrdR-regulated Stickland metabolism in the virulence of C. difficile.


Subject(s)
Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Gene Expression Regulation, Bacterial , Gene Products, rex/genetics , NAD/metabolism , Proline/metabolism , Amino Acid Oxidoreductases/metabolism , Animals , Clostridioides difficile/pathogenicity , Female , Gene Products, rex/antagonists & inhibitors , Mesocricetus , Multienzyme Complexes , Oxidation-Reduction , Regeneration , Virulence
3.
PLoS One ; 14(1): e0206896, 2019.
Article in English | MEDLINE | ID: mdl-30699117

ABSTRACT

Toxin synthesis and endospore formation are two of the most critical factors that determine the outcome of infection by Clostridioides difficile. The two major toxins, TcdA and TcdB, are the principal factors causing damage to the host. Spores are the infectious form of C. difficile, permit survival of the bacterium during antibiotic treatment and are the predominant cell form that leads to recurrent infection. Toxin production and sporulation have their own specific mechanisms of regulation, but they share negative regulation by the global regulatory protein CodY. Determining the extent of such regulation and its detailed mechanism is important for understanding the linkage between two apparently independent biological phenomena and raises the possibility of creating new ways of limiting infection. The work described here shows that a codY null mutant of a hypervirulent (ribotype 027) strain is even more virulent than its parent in a mouse model of infection and that the mutant expresses most sporulation genes prematurely during exponential growth phase. Moreover, examining the expression patterns of mutants producing CodY proteins with different levels of residual activity revealed that expression of the toxin genes is dependent on total CodY inactivation, whereas most sporulation genes are turned on when CodY activity is only partially diminished. These results suggest that, in wild-type cells undergoing nutrient limitation, sporulation genes can be turned on before the toxin genes.


Subject(s)
Bacterial Proteins/metabolism , Clostridioides difficile/metabolism , Clostridioides difficile/pathogenicity , Ribotyping , Spores, Bacterial/physiology , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Toxins/toxicity , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , Clostridioides difficile/genetics , Diarrhea/microbiology , Ethanolamine/metabolism , Gene Expression Regulation, Bacterial/drug effects , Genes, Bacterial , Mice, Inbred C57BL , Multigene Family , Operon/genetics , Point Mutation/genetics , Protein Domains , Spores, Bacterial/genetics , Transcription, Genetic/drug effects , Virulence/genetics
4.
J Bacteriol ; 198(15): 2113-30, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27246573

ABSTRACT

UNLABELLED: Clostridium difficile must form a spore to survive outside the gastrointestinal tract. The factors that trigger sporulation in C. difficile remain poorly understood. Previous studies have suggested that a link exists between nutritional status and sporulation initiation in C. difficile In this study, we investigated the impact of the global nutritional regulator CodY on sporulation in C. difficile strains from the historical 012 ribotype and the current epidemic 027 ribotype. Sporulation frequencies were increased in both backgrounds, demonstrating that CodY represses sporulation in C. difficile The 027 codY mutant exhibited a greater increase in spore formation than the 012 codY mutant. To determine the role of CodY in the observed sporulation phenotypes, we examined several factors that are known to influence sporulation in C. difficile Using transcriptional reporter fusions and quantitative reverse transcription-PCR (qRT-PCR) analysis, we found that two loci associated with the initiation of sporulation, opp and sinR, are regulated by CodY. The data demonstrate that CodY is a repressor of sporulation in C. difficile and that the impact of CodY on sporulation and expression of specific genes is significantly influenced by the strain background. These results suggest that the variability of CodY-dependent regulation is an important contributor to virulence and sporulation in current epidemic isolates. This report provides further evidence that nutritional state, virulence, and sporulation are linked in C. difficile IMPORTANCE: This study sought to examine the relationship between nutrition and sporulation in C. difficile by examining the global nutritional regulator CodY. CodY is a known virulence and nutritional regulator of C. difficile, but its role in sporulation was unknown. Here, we demonstrate that CodY is a negative regulator of sporulation in two different ribotypes of C. difficile We also demonstrate that CodY regulates known effectors of sporulation, Opp and SinR. These results support the idea that nutrient limitation is a trigger for sporulation in C. difficile and that the response to nutrient limitation is coordinated by CodY. Additionally, we demonstrate that CodY has an altered role in sporulation regulation for some strains.


Subject(s)
Bacterial Proteins/metabolism , Clostridioides difficile/physiology , Gene Expression Regulation, Bacterial/physiology , Repressor Proteins/metabolism , Spores, Bacterial/physiology , Bacterial Proteins/genetics , Mutation , Repressor Proteins/genetics
5.
J Bacteriol ; 198(16): 2180-91, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27246574

ABSTRACT

UNLABELLED: The Neisseria gonorrhoeae ferric uptake regulator (Fur) protein controls expression of iron homeostasis genes in response to intracellular iron levels. In this study, using transcriptome sequencing (RNA-seq) analysis of an N. gonorrhoeae fur strain, we defined the gonococcal Fur and iron regulons and characterized Fur-controlled expression of an ArsR-like DNA binding protein. We observed that 158 genes (8% of the genome) showed differential expression in response to iron in an N. gonorrhoeae wild-type or fur strain, while 54 genes exhibited differential expression in response to Fur. The Fur regulon was extended to additional regulators, including NrrF and 13 other small RNAs (sRNAs), and two transcriptional factors. One transcriptional factor, coding for an ArsR-like regulator (ArsR), exhibited increased expression under iron-replete conditions in the wild-type strain but showed decreased expression across iron conditions in the fur strain, an effect that was reversed in a fur-complemented strain. Fur was shown to bind to the promoter region of the arsR gene downstream of a predicted σ(70) promoter region. Electrophoretic mobility shift assay (EMSA) analysis confirmed binding of the ArsR protein to the norB promoter region, and sequence analysis identified two additional putative targets, NGO1411 and NGO1646. A gonococcal arsR strain demonstrated decreased survival in human endocervical epithelial cells compared to that of the wild-type and arsR-complemented strains, suggesting that the ArsR regulon includes genes required for survival in host cells. Collectively, these results demonstrate that the N. gonorrhoeae Fur functions as a global regulatory protein to repress or activate expression of a large repertoire of genes, including additional transcriptional regulatory proteins. IMPORTANCE: Gene regulation in bacteria in response to environmental stimuli, including iron, is of paramount importance to both bacterial replication and, in the case of pathogenic bacteria, successful infection. Bacterial DNA binding proteins are a common mechanism utilized by pathogens to control gene expression under various environmental conditions. Here, we show that the DNA binding protein Fur, expressed by the human pathogen Neisseria gonorrhoeae, controls the expression of a large repertoire of genes and extends this regulon by controlling expression of additional DNA binding proteins. One of these proteins, an ArsR-like regulator, was required for N. gonorrhoeae survival within host cells. These results show that the Fur regulon extends to additional regulatory proteins, which together contribute to gonococcal mechanisms of pathogenesis.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Iron/metabolism , Neisseria gonorrhoeae/metabolism , Repressor Proteins/metabolism , Bacterial Proteins/genetics , Binding Sites , DNA, Bacterial , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Neisseria gonorrhoeae/genetics , Promoter Regions, Genetic , Repressor Proteins/genetics , Transcriptome
6.
PLoS Pathog ; 10(2): e1003935, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24550730

ABSTRACT

In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A) binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis.


Subject(s)
Bacillus cereus/pathogenicity , Ferritins/metabolism , Host-Pathogen Interactions/physiology , Iron/metabolism , Oligopeptides/metabolism , Animals , Bacillus cereus/metabolism , Bacterial Proteins/metabolism , Fluorescent Antibody Technique , Moths/metabolism , Moths/microbiology , Virulence/physiology
7.
Infect Immun ; 81(10): 3652-61, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23876804

ABSTRACT

Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhea, can infect and colonize multiple mucosal sites in both men and women. The ability to cope with different environmental conditions requires tight regulation of gene expression. In this study, we identified and characterized a gonococcal transcriptional regulatory protein (Neisseria phage repressor [Npr]) that was previously annotated as a putative gonococcal phage repressor protein. Npr was found to repress transcription of NGNG_00460 to NGNG_00463 (NGNG_00460-00463), an operon present within the phage locus NgoΦ4. Npr binding sites within the NGNG_00460-00463 promoter region were found to overlap the -10 and -35 promoter motifs. A gonococcal npr mutant demonstrated increased adherence to and invasion of human endocervical epithelial cells compared to a wild-type gonococcal strain. Likewise, the gonococcal npr mutant exhibited enhanced colonization in a gonococcal mouse model of mucosal infection. Analysis of the gonococcal npr mutant using RNA sequence (RNA-seq) analysis demonstrated that the Npr regulon is limited to the operon present within the phage locus. Collectively, our studies have defined a new gonococcal phage repressor protein that controls the transcription of genes implicated in gonococcal pathogenesis.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Gonorrhea/microbiology , Neisseria gonorrhoeae/metabolism , Animals , Bacterial Proteins/genetics , Cell Culture Techniques , Cell Line , Cells, Cultured , Cervix Uteri/cytology , Female , Humans , Mice , Mice, Inbred BALB C , Mutation , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/physiology , Reverse Transcriptase Polymerase Chain Reaction
8.
PLoS Pathog ; 5(11): e1000675, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19956654

ABSTRACT

The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts.


Subject(s)
Bacillus cereus/metabolism , Bacterial Proteins/metabolism , Iron/metabolism , Animals , Bacillus cereus/chemistry , Bacillus cereus/growth & development , Bacillus cereus/pathogenicity , Cell Line , Ferritins , Heme , Hemoglobins , Insecta , Lactoferrin , Transferrin
9.
Mol Microbiol ; 62(2): 339-55, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16978259

ABSTRACT

Bacillus cereus is an opportunistic bacterium frequently associated with food-borne infections causing gastroenteritis. We developed an in vivo expression technology (IVET), with an insect host, for identification of the B. cereus genes specifically expressed during infection. This IVET-based approach uses site-specific recombinase TnpI to identify transient promoter activation. We constructed a genomic library of B. cereus ATCC14579 by cloning DNA fragments upstream from tnpI. The library was screened in vivo by oral infection of the insect Galleria mellonella. We selected 100 clones from dead larvae. Sequencing of the inserts followed by a second screen for specific in vivo induction led to the identification of 20 in vivo-induced genes (ivi genes). They belonged to several different functional classes: regulation, metabolism, DNA repair and replication, cell division, transport, virulence and adaptation. A strongly induced gene, ivi29, was further analysed. It encodes an internalin-like protein with four distinct domains: an N-terminal signal peptide for export, a NEAT domain thought to be involved in iron transport, a leucine-rich repeat domain that may interact with host cells, and a C-terminal SLH domain presumably binding the protein to the peptidoglycan. As suggested by a Fur box in the promoter, transcriptional analysis showed ivi29 expression to be repressed by iron, suggesting that expression was induced in vivo due to iron deprivation in the host. This iron-regulated, leucine-rich surface protein was designated IlsA. Disruption of ilsA reduced the virulence of the bacteria to the insect larvae indicating its role in the overall pathogenesis of B. cereus.


Subject(s)
Bacillus cereus/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , Moths/microbiology , Amino Acid Sequence , Animals , Bacillus cereus/pathogenicity , Base Sequence , Gene Expression Regulation, Bacterial/drug effects , Iron/pharmacology , Larva/microbiology , Models, Genetic , Molecular Sequence Data , Mutation/genetics , Transcriptional Activation/drug effects , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...