Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 18(1): 107, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059075

ABSTRACT

Reducing the pool of HIV-1 reservoirs in patients is a must to achieve functional cure. The most prominent HIV-1 cell reservoirs are resting CD4 + T cells and brain derived microglial cells. Infected microglial cells are believed to be the source of peripheral tissues reseedings and the emergence of drug resistance. Clearing infected cells from the brain is therefore crucial. However, many characteristics of microglial cells and the central nervous system make extremely difficult their eradication from brain reservoirs. Current methods, such as the "shock and kill", the "block and lock" and gene editing strategies cannot override these difficulties. Therefore, new strategies have to be designed when considering the elimination of brain reservoirs. We set up an original gene suicide strategy using latently infected microglial cells as model cells. In this paper we provide proof of concept of this strategy.


Subject(s)
Brain/virology , Genes, Transgenic, Suicide , HIV Infections , HIV-1 , Virus Latency , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Gene Editing , Humans , Microglia/virology
2.
Viruses ; 13(2)2021 02 23.
Article in English | MEDLINE | ID: mdl-33672333

ABSTRACT

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China at the end of 2019 causing a large global outbreak. As treatments are of the utmost importance, drug repurposing embodies a rich and rapid drug discovery landscape, where candidate drug compounds could be identified and optimized. To this end, we tested seven compounds for their ability to reduce replication of human coronavirus (HCoV)-229E, another member of the coronavirus family. Among these seven drugs tested, four of them, namely rapamycin, disulfiram, loperamide and valproic acid, were highly cytotoxic and did not warrant further testing. In contrast, we observed a reduction of the viral titer by 80% with resveratrol (50% effective concentration (EC50) = 4.6 µM) and lopinavir/ritonavir (EC50 = 8.8 µM) and by 60% with chloroquine (EC50 = 5 µM) with very limited cytotoxicity. Among these three drugs, resveratrol was less cytotoxic (cytotoxic concentration 50 (CC50) = 210 µM) than lopinavir/ritonavir (CC50 = 102 µM) and chloroquine (CC50 = 67 µM). Thus, among the seven drugs tested against HCoV-229E, resveratrol demonstrated the optimal antiviral response with low cytotoxicity with a selectivity index (SI) of 45.65. Similarly, among the three drugs with an anti-HCoV-229E activity, namely lopinavir/ritonavir, chloroquine and resveratrol, only the latter showed a reduction of the viral titer on SARS-CoV-2 with reduced cytotoxicity. This opens the door to further evaluation to fight Covid-19.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 229E, Human/drug effects , Resveratrol/pharmacology , Ritonavir/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Cell Line , Chloroquine/pharmacology , Coronavirus 229E, Human/physiology , Drug Repositioning , Humans , Lopinavir/pharmacology , Male , SARS-CoV-2/physiology , Viral Load
3.
Sci Rep ; 11(1): 2692, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514850

ABSTRACT

HIV-1 latency generates reservoirs that prevent viral eradication by the current therapies. To find strategies toward an HIV cure, detailed understandings of the molecular mechanisms underlying establishment and persistence of the reservoirs are needed. The cellular transcription factor KAP1 is known as a potent repressor of gene transcription. Here we report that KAP1 represses HIV-1 gene expression in myeloid cells including microglial cells, the major reservoir of the central nervous system. Mechanistically, KAP1 interacts and colocalizes with the viral transactivator Tat to promote its degradation via the proteasome pathway and repress HIV-1 gene expression. In myeloid models of latent HIV-1 infection, the depletion of KAP1 increased viral gene elongation and reactivated HIV-1 expression. Bound to the latent HIV-1 promoter, KAP1 associates and cooperates with CTIP2, a key epigenetic silencer of HIV-1 expression in microglial cells. In addition, Tat and CTIP2 compete for KAP1 binding suggesting a dynamic modulation of the KAP1 cellular partners upon HIV-1 infection. Altogether, our results suggest that KAP1 contributes to the establishment and the persistence of HIV-1 latency in myeloid cells.


Subject(s)
Gene Expression Regulation, Viral , HIV Infections/metabolism , HIV-1/metabolism , Myeloid Cells/metabolism , Transcription, Genetic , Tripartite Motif-Containing Protein 28/metabolism , HEK293 Cells , HIV Infections/genetics , HIV-1/genetics , Humans , Myeloid Cells/virology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Tripartite Motif-Containing Protein 28/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism
4.
Biochimie ; 171-172: 110-123, 2020.
Article in English | MEDLINE | ID: mdl-32105815

ABSTRACT

Human Ku heterodimeric protein composed of Ku70 and Ku80 subunits plays an important role in the non-homologous end-joining DNA repair pathway as a sensor of double strand DNA breaks. Ku is also involved in numerous cellular processes, and in some of them it acts in an RNA-dependent manner. However, RNA binding properties of the human Ku have not been well studied. Here we have analyzed interactions of a recombinant Ku heterodimer with a set of RNAs of various structure as well as eCLIP (enhanced crosslinking and immunoprecipitation) data for human Ku70. As a result, we have proposed a consensus RNA structure preferable for the Ku binding that is a hairpin possessing a bulge just near GpG sequence-containing terminal loop. 7SK snRNA is a scaffold for a ribonucleoprotein complex (7SK snRNP), which is known to participate in transcription regulation. We have shown that the recombinant Ku specifically binds a G-rich loop of hairpin 1 within 7SK snRNA. Moreover, Ku protein has been co-precipitated from HEK 293T cells with endogenous 7SK snRNA and such proteins included in 7SK snRNP as HEXIM1, Cdk9 and CTIP2. Ku and Cdk9 binding is found to be RNA-independent, meanwhile HEXIM1 and Ku co-precipitation depended on the presence of intact 7SK snRNA. The latter result has been confirmed using recombinant HEXIM1 and Ku proteins. Colocalization of Ku and CTIP2 was additionally confirmed by confocal microscopy. These results allow us to propose human Ku as a new component of the 7SK snRNP complex.


Subject(s)
Ku Autoantigen/metabolism , RNA, Long Noncoding/metabolism , Binding Sites , Cyclin-Dependent Kinase 9/metabolism , HEK293 Cells , Humans , Protein Binding , RNA-Binding Proteins/metabolism , Recombinant Proteins/metabolism , Repressor Proteins/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
5.
Article in English | MEDLINE | ID: mdl-31709195

ABSTRACT

Despite efficient combination of the antiretroviral therapy (cART), which significantly decreased mortality and morbidity of HIV-1 infection, a definitive HIV cure has not been achieved. Hidden HIV-1 in cellular and anatomic reservoirs is the major hurdle toward a functional cure. Microglial cells, the Central Nervous system (CNS) resident macrophages, are one of the major cellular reservoirs of latent HIV-1. These cells are believed to be involved in the emergence of drugs resistance and reseeding peripheral tissues. Moreover, these long-life reservoirs are also involved in the development of HIV-1-associated neurocognitive diseases (HAND). Clearing these infected cells from the brain is therefore crucial to achieve a cure. However, many characteristics of microglial cells and the CNS hinder the eradication of these brain reservoirs. Better understandings of the specific molecular mechanisms of HIV-1 latency in microglial cells should help to design new molecules and new strategies preventing HAND and achieving HIV cure. Moreover, new strategies are needed to circumvent the limitations associated to anatomical sanctuaries with barriers such as the blood brain barrier (BBB) that reduce the access of drugs.


Subject(s)
Disease Reservoirs , HIV Infections/virology , HIV-1/physiology , Microglia/virology , Brain/virology , HIV Infections/drug therapy , HIV-1/drug effects , Host-Pathogen Interactions , Humans , Microglia/drug effects , Virus Activation , Virus Latency
6.
Sci Rep ; 7(1): 15199, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29123174

ABSTRACT

The rise of antimicrobial resistant microorganisms constitutes an increasingly serious threat to global public health. As a consequence, the efficacy of conventional antimicrobials is rapidly declining, threatening the ability of healthcare professionals to cure common infections. Over the last two decades host defense peptides have been identified as an attractive source of new antimicrobials. In the present study, we characterized the antibacterial and mechanistic properties of D-Cateslytin (D-Ctl), a new epipeptide derived from L-Cateslytin, where all L-amino acids were replaced by D-amino acids. We demonstrated that D-Ctl emerges as a potent, safe and robust peptide antimicrobial with undetectable susceptibility to resistance. Using Escherichia coli as a model, we reveal that D-Ctl targets the bacterial cell wall leading to the permeabilization of the membrane and the death of the bacteria. Overall, D-Ctl offers many assets that make it an attractive candidate for the biopharmaceutical development of new antimicrobials either as a single therapy or as a combination therapy as D-Ctl also has the remarkable property to potentiate several antimicrobials of reference such as cefotaxime, amoxicillin and methicillin.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Chromogranin A/pharmacology , Escherichia coli/drug effects , Peptide Fragments/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/toxicity , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/toxicity , Caco-2 Cells , Cell Membrane/drug effects , Cell Survival/drug effects , Cell Wall/drug effects , Chromogranin A/chemical synthesis , Chromogranin A/toxicity , Drug Synergism , Epithelial Cells/drug effects , Firmicutes/drug effects , Humans , Microbial Sensitivity Tests , Microbial Viability/drug effects , Peptide Fragments/chemical synthesis , Peptide Fragments/toxicity , Permeability/drug effects , Prevotella intermedia/drug effects
7.
Front Immunol ; 7: 397, 2016.
Article in English | MEDLINE | ID: mdl-27746784

ABSTRACT

One of the top research priorities of the international AIDS society by the action "Towards an HIV Cure" is the purge or the decrease of the pool of all latently infected cells. This strategy is based on reactivation of latently reservoirs (the shock) followed by an intensifying combination antiretroviral therapy (cART) to kill them (the kill). The central nervous system (CNS) has potential latently infected cells, i.e., perivascular macrophages, microglial cells, and astrocytes that will need to be eliminated. However, the CNS has several characteristics that may preclude the achievement of a cure. In this review, we discuss several limitations to the eradication of brain reservoirs and how we could circumvent these limitations by making it efforts in four directions: (i) designing efficient latency-reversal agents for CNS-cell types, (ii) improving cART by targeting HIV transcription, (iii) improving delivery of HIV drugs in the CNS and in the CNS-cell types, and (iv) developing therapeutic immunization. As a prerequisite to these efforts, we also believe that a better comprehension of molecular mechanisms involved in establishment and persistence of HIV latency in brain reservoirs are essential to design new molecules for strategies aiming to achieve a cure for instance the "shock and kill" strategy.

8.
Expert Opin Ther Targets ; 20(11): 1311-1324, 2016 11.
Article in English | MEDLINE | ID: mdl-27266557

ABSTRACT

INTRODUCTION: Combination Antiretroviral Therapy (cART) has not allowed the cure of HIV. The main obstacle to HIV eradication is the existence of quiescent reservoirs. Several other limitations of cART have been described, such as strict life-long treatment and high costs, restricting it to Western countries, as well as the development of multidrug resistance. Given these limitations and the impetus to find a cure, the development of new treatments is necessary. Areas covered: In this review, we discuss the current status of several efficient molecules able to suppress HIV gene transcription, including NF-kB and Tat inhibitors. We also assess the potential of new proteins belonging to the intriguing DING family, which have been reported to have potential anti-HIV-1 activity by inhibiting HIV gene transcription. Expert opinion: Targeting HIV-1 gene transcription is an alternative approach, which could overcome cART-related issues, such as the emergence of multidrug resistance. Improving cART will rely on the identification and characterization of new actors inhibiting HIV-1 transcription. Combining such efforts with the use of new technologies, the development of new models for preclinical studies, and improvement in drug delivery will considerably reduce drug toxicity and thus increase patient adherence.


Subject(s)
Anti-HIV Agents/administration & dosage , HIV Infections/drug therapy , HIV-1/drug effects , Animals , Anti-HIV Agents/adverse effects , Anti-HIV Agents/pharmacology , Drug Delivery Systems , Drug Design , Drug Resistance, Multiple, Viral , Drug Therapy, Combination , HIV Infections/diet therapy , HIV Infections/virology , HIV-1/genetics , Humans , Medication Adherence , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...