Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 9(5): e15773, 2023 May.
Article in English | MEDLINE | ID: mdl-37215835

ABSTRACT

Curvularia rarely causes human infections despite its ubiquity in the environment. It is most associated with allergic diseases such as chronic sinusitis and allergic bronchopulmonary mycosis; however, causing a lung mass is rarely reported in the literature. We describe an interesting case of a 57-year-old man with a history of asthma and localized prostate cancer diagnosed with a Curvularia-caused lung mass that responded quickly to itraconazole.

2.
AAPS PharmSciTech ; 23(5): 148, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35585214

ABSTRACT

Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) are common disorders that can change the body's physiology and drugs pharmacokinetics. Solid dispersion (SD) preparation using supercritical fluid technology (SFT) has many advantages. Our study aimed to explore the effect of IBS and IBD on atorvastatin (ATV) pharmacokinetics, enhance ATV oral bioavailability (BCS II drug) using SFT, and analyze drug-disease-formulation interaction using a whole-body physiologically based pharmacokinetic (wbPBPK) model in rat and human. A novel ATV formulation was prepared using SFT and characterized in vitro and in vivo in healthy, IBS, and IBD rats. The resulting ATV plasma levels were analyzed using a combination of conventional and wbPBPK approaches. The novel formulation increased ATV solubility by 20-fold and resulted in a zero-order release of up to 95%. Both IBS and IBD increased ATV exposure after oral and intravenous administration by more than 30%. The novel SFT formulation increased ATV bioavailability by 28, 14, and 18% in control, IBD, and IBD rat groups and resulted in more consistent exposure as compared to raw ATV solution. Higher improvements in ATV bioavailability of more than 2-fold upon receiving the novel SFT formulation were predicted by the human wbPBPK model as compared to receiving the conventional tablets. Finally, the established wbPBPK model could describe ATV ADME in the presence of IBS and IBD after oral administration of raw ATV and using the novel SFT formula and can help scale the optimized ATV dosing regimens in the presence of IBS and IBD from rats to humans.


Subject(s)
Inflammatory Bowel Diseases , Irritable Bowel Syndrome , Animals , Atorvastatin , Biological Availability , Humans , Inflammatory Bowel Diseases/drug therapy , Irritable Bowel Syndrome/drug therapy , Rats , Technology
4.
J Mol Graph Model ; 109: 108022, 2021 12.
Article in English | MEDLINE | ID: mdl-34562852

ABSTRACT

Targeting Polo-like kinase 1 (Plk1) by molecular inhibitors is being a promising approach for tumor therapy. Nevertheless, insufficient methodical analyses have been done to characterize the interactions inside the Plk1 binding pocket. In this study, an extensive combined ligand and structure-based drug design workflow was conducted to data-mine the structural requirements for Plk1 inhibition. Consequently, the binding modes of 368 previously known Plk1 inhibitors were investigated by pharmacophore generation technique. The resulted pharmacophores were engaged in the context of Genetic function algorithm (GFA) and Multiple linear regression (MLR) analyses to search for a prognostic QSAR model. The most successful QSAR model was with statistical criteria of (r2277 = 0.76, r2adj = 0.76, r2pred = 0.75, Q2 = 0.73). Our QSAR-selected pharmacophores were validated by Receiver Operating Characteristic (ROC) curve analysis. Later on, the best QSAR model and its associated pharmacophoric hypotheses (HypoB-T4-5, HypoI-T2-7, HypoD-T4-3, and HypoC-T3-3) were used to identify new Plk1 inhibitory hits retrieved from the National Cancer Institute (NCI) database. The most potent hits exhibited experimental anti-Plk1 IC50 of 1.49, 3.79. 5.26 and 6.35 µM. Noticeably, our hits, were found to interact with the Plk1 kinase domain through some important amino acid residues namely, Cys67, Lys82, Cys133, Phe183, and Asp194.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Drug Design , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Quantitative Structure-Activity Relationship , Ligands , Models, Molecular , Protein Binding , Protein Kinase Inhibitors/pharmacology , Polo-Like Kinase 1
5.
Curr Drug Metab ; 22(7): 503-522, 2021.
Article in English | MEDLINE | ID: mdl-34225615

ABSTRACT

In the drug discovery setting, undesirable ADMET properties of a pharmacophore with good predictive power obtained after a tedious drug discovery and development process may lead to late-stage attrition. The earlystage ADMET profiling has brought a new dimension to lead drug development. Although several high-throughput in vitro models are available for ADMET profiling, the in silico methods are gaining more importance because of their economic and faster prediction ability without the requirements of tedious and expensive laboratory resources. Nonetheless, in silico ADMET tools alone are not accurate, and therefore, ideally adopted along with in vitro and or in vivo methods in order to enhance the predictability power. This review summarizes the significance and challenges associated with the application of in silico tools as well as the possible scope of in vitro models for integration to improve the ADMET predictability power of these tools.


Subject(s)
Drug Development/methods , Drug Discovery/methods , Pharmacokinetics , Animals , Computer Simulation , Humans , In Vitro Techniques/methods
6.
IDCases ; 25: e01201, 2021.
Article in English | MEDLINE | ID: mdl-34189046

ABSTRACT

Infective endocarditis (IE) is a persistent health issue, particularly among intravenous drug users. We discussed a case of infective endocarditis in a patient who uses IV drugs, which had some unusual features such as unusual presentation, polymicrobial infection, left-sided valve involvement, coronary embolism, and an uncommon pathogen for IE.

7.
Biopharm Drug Dispos ; 42(6): 263-284, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33904202

ABSTRACT

Renal (RIP) and hepatic (HIP) impairments are prevalent conditions in cancer patients. They can cause changes in gastric emptying time, albumin levels, hematocrit, glomerular filtration rate, hepatic functional volume, blood flow rates, and metabolic activity that can modify drug pharmacokinetics. Performing clinical studies in such populations has ethical and practical issues. Using predictive physiologically-based pharmacokinetic (PBPK) models in the evaluation of the PK of alectinib, ruxolitinib, and panobinostat exposures in the presence of cancer, RIP, and HIP can help in using optimal doses with lower toxicity in these populations. Verified PBPK models were customized under scrutiny to account for the pathophysiological changes induced in these diseases. The PBPK model-predicted plasma exposures in patients with different health conditions within average 2-fold error. The PBPK model predicted an area under the curve ratio (AUCR) of 1, and 1.8, for ruxolitinib and panobinostat, respectively, in the presence of severe RIP. On the other hand, the severe HIP was associated with AUCR of 1.4, 2.9, and 1.8 for alectinib, ruxolitinib, and panobinostat, respectively, in agreement with the observed AUCR. Moreover, the PBPK model predicted that alectinib therapeutic cerebrospinal fluid levels are achieved in patients with non-small cell lung cancer, moderate HIP, and severe HIP at 1-, 1.5-, and 1.8-fold that of healthy subjects. The customized PBPK models showed promising ethical alternatives for simulating clinical studies in patients with cancer, RIP, and HIP. More work is needed to quantify other pathophysiological changes induced by simultaneous affliction by cancer and RIP or HIP.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Carbazoles/pharmacokinetics , Liver Diseases/blood , Models, Biological , Neoplasms/blood , Nitriles/pharmacokinetics , Panobinostat/pharmacokinetics , Piperidines/pharmacokinetics , Protein Kinase Inhibitors/pharmacokinetics , Pyrazoles/pharmacokinetics , Pyrimidines/pharmacokinetics , Renal Insufficiency/blood , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/blood , Area Under Curve , Carbazoles/blood , Fasting/metabolism , Female , Humans , Liver Diseases/metabolism , Male , Middle Aged , Neoplasms/metabolism , Nitriles/blood , Panobinostat/blood , Piperidines/blood , Protein Kinase Inhibitors/blood , Pyrazoles/blood , Pyrimidines/blood , Renal Insufficiency/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL