Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Imaging ; 44: 72-81, 2017 12.
Article in English | MEDLINE | ID: mdl-28782676

ABSTRACT

PURPOSE: To evaluate the biophysical processes that generate specific T2 values and their relationship to specific cerebrospinal fluid (CSF) content. MATERIALS AND METHODS: CSF T2s were measured ex vivo (14.1T) from isolated CSF collected from human, rat and non-human primate. CSF T2s were also measured in vivo at different field strength in human (3 and 7T) and rodent (1, 4.7, 9,4 and 11.7T) using different pulse sequences. Then, relaxivities of CSF constituents were measured, in vitro, to determine the major molecule responsible for shortening CSF T2 (2s) compared to saline T2 (3s). The impact of this major molecule on CSF T2 was then validated in rodent, in vivo, by the simultaneous measurement of the major molecule concentration and CSF T2. RESULTS: Ex vivo CSF T2 was about 2.0s at 14.1T for all species. In vivo human CSF T2 approached ex vivo values at 3T (2.0s) but was significantly shorter at 7T (0.9s). In vivo rodent CSF T2 decreased with increasing magnetic field and T2 values similar to the in vitro ones were reached at 1T (1.6s). Glucose had the largest contribution of shortening CSF T2in vitro. This result was validated in rodent in vivo, showing that an acute change in CSF glucose by infusion of glucose into the blood, can be monitored via changes in CSF T2 values. CONCLUSION: This study opens the possibility of monitoring glucose regulation of CSF at the resolution of MRI by quantitating T2.


Subject(s)
Blood Glucose/metabolism , Cerebrospinal Fluid/metabolism , Magnetic Resonance Imaging/methods , Spine/diagnostic imaging , Spine/metabolism , Adult , Animals , Female , Humans , Macaca mulatta , Male , Models, Animal , Rats , Spectrum Analysis
2.
Neuroimage ; 64: 10-8, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-22995778

ABSTRACT

Manganese enhanced MRI (MEMRI) offers many possibilities such as tract tracing and functional imaging in vivo. Mn is however neurotoxic and may induce symptoms similar to those associated with Parkinson's disease (manganism). The mechanisms of Mn-induced neurotoxicity are not clear. In this study, we combine synchrotron X-ray fluorescence microprobe (SR-XRF) and MEMRI techniques to investigate spatial distribution of Mn within the rat hippocampus and how Mn interacts with Ca, Fe and Zn at a cellular level. Images were acquired in the rat hippocampus (n=23) and using two injection routes: intra-cerebral (MnCl(2): 50 mM, 10 µL) and intra-peritoneal (MnCl(2): 100 mM, 30 mg/kg). For both injection routes, Mn is found in dentate gyrus and in CA3: control: 2.5 ± 1.6, intra-peritoneal: 5.0 ± 2.4, and intra-cerebral: 25.1 ± 9.2 µg/g. Mn follows Zn distribution and has a negative impact on the total amount of Zn and Fe. The Mn-enhanced MRI contrast is well correlated with the total Mn amount measured with SR-XRF (R(2)=0.93; p<0.002). After intra-cerebral injection, the hippocampal fissure is found to accumulate a large amount of Mn and yields a hypointense MRI signal, which may be ascribed to a reduction in T2. This study shows that SR-XRF is well suited to investigate Mn distribution at a mesoscale and that MRI is sensitive to low Mn concentrations. As perturbations in metal homeostasis may alter brain function, the injected dose of Mn in MEMRI studies needs to be carefully adjusted to obtain reliable functional information.


Subject(s)
Hippocampus/anatomy & histology , Hippocampus/metabolism , Iron/metabolism , Magnesium Chloride/pharmacology , Magnetic Resonance Imaging/methods , Zinc/metabolism , Animals , Contrast Media/pharmacokinetics , Contrast Media/pharmacology , Female , Hippocampus/drug effects , Metabolic Clearance Rate , Rats , Rats, Sprague-Dawley , Synchrotrons , Tissue Distribution , X-Ray Microtomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...