Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Pharmaceutics ; 16(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794326

ABSTRACT

BACKGROUND: The identification of novel therapeutic strategies for ovarian cancer (OC), the most lethal gynecological neoplasm, is of utmost urgency. Here, we have tested the effectiveness of the compound 2c (4-hydroxy-2,6-bis(4-nitrobenzylidene)cyclohexanone 2). 2c interferes with the cysteine-dependent deubiquitinating enzyme (DUB) UCHL5, thus affecting the ubiquitin-proteasome-dependent degradation of proteins. METHODS: 2c phenotypic/molecular effects were studied in two OC 2D/3D culture models and in a mouse xenograft model. Furthermore, we propose an in silico model of 2c interaction with DUB-UCHL5. Finally, we have tested the effect of 2c conjugated to several linkers to generate 2c/derivatives usable for improved drug delivery. RESULTS: 2c effectively impairs the OC cell line and primary tumor cell viability in both 2D and 3D conditions. The effectiveness is confirmed in a xenograft mouse model of OC. We show that 2c impairs proteasome activity and triggers apoptosis, most likely by interacting with DUB-UCHL5. We also propose a mechanism for the interaction with DUB-UCHL5 via an in silico evaluation of the enzyme-inhibitor complex. 2c also reduces cell growth by down-regulating the level of the transcription factor E2F1. Eventually, 2c activity is often retained after the conjugation with linkers. CONCLUSION: Our data strongly support the potential therapeutic value of 2c/derivatives in OC.

2.
Biomedicines ; 12(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672229

ABSTRACT

Breast cancer (BC) is currently the most common neoplasm, the second leading cause of cancer death in women worldwide, and is a major health problem. The discovery of new biomarkers is crucial to improve our knowledge of breast cancer and strengthen our clinical approaches to diagnosis, prognosis, and follow-up. In recent decades, there has been increasing interest in circulating RNA (circRNA) as modulators of gene expression involved in tumor development and progression. The study of circulating circRNAs (ccircRNAs) in plasma may provide new non-invasive diagnostic, prognostic, and predictive biomarkers for BC. This review describes the latest findings on BC-associated ccircRNAs in plasma and their clinical utility. Several ccircRNAs in plasma have shown great potential as BC biomarkers, especially from a diagnostic point of view. Mechanistically, most of the reported BC-associated ccircRNAs are involved in the regulation of cell survival, proliferation, and invasion, mainly via MAPK/AKT signaling pathways. However, the study of circRNAs is a relatively new area of research, and a larger number of studies will be crucial to confirm their potential as plasma biomarkers and to understand their involvement in BC.

3.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339210

ABSTRACT

The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.


Subject(s)
Asthma , Cystic Fibrosis , Pulmonary Disease, Chronic Obstructive , Respiration Disorders , Humans , Mucus/metabolism , Respiration Disorders/metabolism , Respiratory System/metabolism , Cystic Fibrosis/metabolism , Asthma/metabolism , Sputum/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Mucins/metabolism
4.
Pharmaceutics ; 15(4)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37111734

ABSTRACT

Hepatocellular carcinoma (HCC) remains a global health challenge, representing the third leading cause of cancer deaths worldwide. Although therapeutic advances have been made in the few last years, the prognosis remains poor. Thus, there is a dire need to develop novel therapeutic strategies. In this regard, two approaches can be considered: (1) the identification of tumor-targeted delivery systems and (2) the targeting of molecule(s) whose aberrant expression is confined to tumor cells. In this work, we focused on the second approach. Among the different kinds of possible target molecules, we discuss the potential therapeutic value of targeting non-coding RNAs (ncRNAs), which include micro interfering RNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These molecules represent the most significant RNA transcripts in cells and can regulate many HCC features, including proliferation, apoptosis, invasion and metastasis. In the first part of the review, the main characteristics of HCC and ncRNAs are described. The involvement of ncRNAs in HCC is then presented over five sections: (a) miRNAs, (b) lncRNAs, (c) circRNAs, (d) ncRNAs and drug resistance and (e) ncRNAs and liver fibrosis. Overall, this work provides the reader with the most recent state-of-the-art approaches in this field, highlighting key trends and opportunities for more advanced and efficacious HCC treatments.

5.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108391

ABSTRACT

Epithelial ovarian cancers (EOCs) are a heterogeneous group of tumors with different molecular and clinical features. In past decades, few improvements have been achieved in terms of EOC management and treatment efficacy, such that the 5-year survival rate of patients remained almost unchanged. A better characterization of EOCs' heterogeneity is needed to identify cancer vulnerabilities, stratify patients and adopt proper therapies. The mechanical features of malignant cells are emerging as new biomarkers of cancer invasiveness and drug resistance that can further improve our knowledge of EOC biology and allow the identification of new molecular targets. In this study, we determined the inter and intra-mechanical heterogeneity of eight ovarian cancer cell lines and their association with tumor invasiveness and resistance to an anti-tumoral drug with cytoskeleton depolymerization activity (2c).


Subject(s)
Antineoplastic Agents , Neoplasms, Glandular and Epithelial , Ovarian Neoplasms , Humans , Female , Cell Line, Tumor , Ovarian Neoplasms/metabolism , Carcinoma, Ovarian Epithelial/drug therapy , Antineoplastic Agents/therapeutic use , Neoplasms, Glandular and Epithelial/drug therapy , Biomarkers, Tumor/metabolism
6.
Int J Mol Sci ; 23(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35456960

ABSTRACT

Although the eukaryotic elongation factor eEF1A1 plays a role in various tumours, there is little information on its prognosis/therapeutic value in prostate carcinoma. In high-grade and castration-resistant prostate carcinoma (CRPC), the identification of novel therapeutic markers/targets remains a priority. The expression of eEF1A1 protein was determined in formalin-fixed, paraffin-embedded prostate cancer and hyperplasia tissue by IHC. The role of eEF1A1 was investigated in a cellular model using a DNA aptamer (GT75) we previously developed. We used the aggressive CRPC cancer PC-3 and non-tumourigenic PZHPV-7 lines. Cytotoxicity was measured by the MTS assay and eEF1A1 protein levels by in-cell Western assays. The mRNA levels of eEF1A1 were measured by qPCR and ddPCR. Higher expression of eEF1A1 was found in Gleason 7-8 compared with 4-6 tissues (Gleason ≥ 7, 87% versus Gleason ≤ 6, 54%; p = 0.033). Patients with a high expression of eEF1A1 had a worse clinical outcome. In PC-3, but not in PZHPV-7, GT75 decreased cell viability and increased autophagy and cell detachment. In PC-3 cells, but not in PZHPV-7, GT75 mainly co-localised with the fraction of eEF1A1 bound to actin. Overexpression of the eEF1A1 protein can identify aggressive forms of prostate cancer. The targeting of eEF1A1 by GT75 impaired cell viability in PC-3 cancer cells but not in PZHPV-7 non-tumourigenic cells, indicating a specific role for the protein in cancer survival. The eEF1A1-actin complexes appear to be critical for the viability of PC-3 cancer cells, suggesting that eEF1A1 may be an attractive target for therapeutic strategies in advanced forms of prostate cancer.


Subject(s)
Prostate , Prostatic Neoplasms, Castration-Resistant , Actins/genetics , Cell Line, Tumor , Humans , Male , Peptide Elongation Factor 1/genetics , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/pathology , RNA, Messenger
7.
Pharmaceutics ; 14(4)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35456552

ABSTRACT

The treatment of urological cancers has been significantly improved in recent years. However, for the advanced stages of these cancers and/or for those developing resistance, novel therapeutic options need to be developed. Among the innovative strategies, the use of small interfering RNA (siRNA) seems to be of great therapeutic interest. siRNAs are double-stranded RNA molecules which can specifically target virtually any mRNA of pathological genes. For this reason, siRNAs have a great therapeutic potential for human diseases including urological cancers. However, the fragile nature of siRNAs in the biological environment imposes the development of appropriate delivery systems to protect them. Thus, ensuring siRNA reaches its deep tissue target while maintaining structural and functional integrity represents one of the major challenges. To reach this goal, siRNA-based therapies require the development of fine, tailor-made delivery systems. Polymeric nanoparticles, lipid nanoparticles, nanobubbles and magnetic nanoparticles are among nano-delivery systems studied recently to meet this demand. In this review, after an introduction about the main features of urological tumors, we describe siRNA characteristics together with representative delivery systems developed for urology applications; the examples reported are subdivided on the basis of the different delivery materials and on the different urological cancers.

8.
Cancers (Basel) ; 14(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35406401

ABSTRACT

BACKGROUND: For hepatocellular carcinoma (HCC), effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to HCC development, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. As most 5-Aza mechanisms of action are unknown, we investigated its phenotypic/molecular effects. METHODS: 5-Aza effects were examined in the human HCC cell lines JHH-6/HuH-7 and in the rat cell-line N1-S1. We also employed a xenograft mouse model (HuH-7), a zebrafish model (JHH-6), and an orthotopic syngeneic rat model (N1-S1) of HCC. RESULTS: 5-Aza downregulated cell viability/growth/migration/adhesion by upregulating miR-139-5p, which in turn downregulated ROCK2/cyclin D1/E2F1 and increased p27kip1, resulting in G1/G0 cell accumulation. Moreover, a decrease in cyclin B1 and an increase in p27kip1 led to G2/M accumulation. Finally, we observed a decrease in MMP-2 levels, a stimulator of HCC cell migration. Aza effects were confirmed in the mouse model; in the zebrafish model, we also demonstrated the downregulation of tumor neo-angiogenesis, and in the orthotopic rat model, we observed impaired N1-S1 grafting in a healthy liver. CONCLUSION: We demonstrate for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn impairs the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. Thus, we provide novel information about 5-Aza mechanisms of action and deepen the knowledge about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/p27kip1/MMP-2 in HCC.

9.
Drug Deliv Transl Res ; 12(8): 1943-1958, 2022 08.
Article in English | MEDLINE | ID: mdl-35286625

ABSTRACT

Cystic fibrosis (CF) is a disease characterized by the production of viscous mucoid secretions in multiple organs, particularly the airways. The pathological increase of proteins, mucin and biological polymers determines their arrangement into a three-dimensional polymeric network, affecting the whole mucus and impairing the muco-ciliary clearance which promotes inflammation and bacterial infection. Thus, to improve the efficacy of the drugs usually applied in CF therapy (e.g., mucolytics, anti-inflammatory and antibiotics), an in-depth understanding of the mucus nanostructure is of utmost importance. Drug diffusivity inside a gel-like system depends on the ratio between the diffusing drug molecule radius and the mesh size of the network. Based on our previous findings, we propose the combined use of rheology and low field NMR to study the mesh size distribution of the sputum from CF patients. Specifically, we herein explore the effects of chest physiotherapy on CF sputum characteristic as evaluated by rheology, low field NMR and the drug penetration through the mucus via mathematical simulation. These data show that chest physiotherapy has beneficial effects on patients, as it favourably modifies sputum and enhances drug penetration through the respiratory mucus.


Subject(s)
Cystic Fibrosis , Nanostructures , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Humans , Mucus/metabolism , Physical Therapy Modalities , Sputum/chemistry , Sputum/metabolism
10.
Respir Med ; 189: 106623, 2021.
Article in English | MEDLINE | ID: mdl-34624628

ABSTRACT

BACKGROUND: As most cystic fibrosis (CF) patients progress to respiratory failure, lung functionality assessment is pivotal. We previously developed a test that indirectly monitors airways (inflammation/functional test) by measuring the spin-spin relaxation time (T2m) of the water hydrogens present in CF sputum. Here the T2m significance in the monitoring of CF lung disease was further investigated by studying the correlation of T2m with: 1) sputum viscoelasticity, 2) mucociliary clearability index (MCI)/cough clearability index (CCI) and 3) sputum average mesh-size. METHODS: Sputum samples from 25 consenting CF subjects were analyzed by rheology tests (elastic modulus G and zero shear viscosity η0) and Low Field Nuclear Magnetic (LF-NMR) resonance (T2m). MCI/CCI were calculated from the rheological parameters. The average mesh-size (ξ) of the sputum structure was then evaluated by rheology/LF-NMR, together with FEV1 for each patient. RESULTS: There was an inverse correlation between G and η0 versus T2m, indicating that a worsening of the lung condition (T2m-FEV1 drop) is paralleled by an increase in sputum viscoelasticity (G and η0) favoring mucus stasis/inflammation. A direct correlation was also observed between T2m and MCI/CCI, showing that T2m provides information as to airway mucus clearing. Moreover, there was a direct correlation between T2m and the average sputum mesh size (ξ). CONCLUSIONS: We demonstrated a correlation between T2m (measured in CF patient's sputum) and the sputum viscoelasticity/average mesh-size and with MCI/CCI, parameters related to airway mucus clearing. Thus, the present data strengthen the potential of our test to provide indirect monitoring of airway disease course in CF patients as T2m depends on mucus solid concentration and nanostructure.


Subject(s)
Cystic Fibrosis/physiopathology , Magnetic Resonance Spectroscopy , Rheology , Adult , Aged , Aged, 80 and over , Cystic Fibrosis/drug therapy , Female , Humans , Male , Middle Aged , Mucociliary Clearance , Respiratory Function Tests , Sputum/chemistry , Viscosity
11.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34451900

ABSTRACT

Hepatocellular carcinoma (HCC) is the sixth most common type of tumor and the second leading cause of tumor-related death worldwide. Liver cirrhosis is the most important predisposing factor for HCC. Available therapeutic approaches are not very effective, especially for advanced HCC, which is the most common form of the disease at diagnosis. New therapeutic strategies are therefore urgently needed. The use of animal models represents a relevant tool for preclinical screening of new molecules/strategies against HCC. However, several issues, including animal husbandry, limit the use of current models (rodent/pig). One animal model that has attracted the attention of the scientific community in the last 15 years is the zebrafish. This freshwater fish has several attractive features, such as short reproductive time, limited space and cost requirements for husbandry, body transparency and the fact that embryos do not show immune response to transplanted cells. To date, two different types of zebrafish models for HCC have been developed: the transgenic zebrafish and the zebrafish xenograft models. Since transgenic zebrafish models for HCC have been described elsewhere, in this review, we focus on the description of zebrafish xenograft models that have been used in the last five years to test new molecules/strategies against HCC.

12.
J Control Release ; 330: 1132-1151, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33212117

ABSTRACT

Given the lack of effective treatments for Hepatocellular carcinoma (HCC), the development of novel therapeutic approaches is very urgent. Here, siRNAs were delivered to HCC cells by a synthetic polymer containing α,ß-poly-(N-2-hydroxyethyl)-D,L-aspartamide-(PHEA) derivatized with diethylene triamine (DETA) and bearing in the side chain galactose (GAL) linked via a polyethylene glycol (PEG) to obtain (PHEA-DETA-PEG-GAL, PDPG). The GAL residue allows the targeting to the asialo-glycoprotein receptor (ASGPR), overexpressed in HCC cells compared to normal hepatocytes. Uptake studies performed using a model siRNA or a siRNA targeted against the enhanced green fluorescence protein, demonstrated the PDPG specific delivery of siRNA to HuH7 cells, a human cellular model of HCC. GAL-free copolymer (PHEA-DETA-PEG-NH2, PDP) or the chemical block of ASGPR, impaired PDPG targeting effectiveness in vitro. The specificity of PDPG delivery was confirmed in vivo in a mouse dorsal skinfold window chamber assay. Functional studies using siRNAs targeting the mRNAs of HCC-related genes (eEF1A1, eEF1A2 and E2F1) delivered by PDPG, significantly decreased HuH7 vitality/number and down regulated the expression of the target genes. Only minor effectiveness was in contrast observed for PDP. In IHH, a human model of normal hepatocytes with reduced ASGPR expression, PDPG barely reduced cell vitality. In a subcutaneous xenograft mouse model of HCC, PDPG-siRNAs reduced HCC tumor growth compared to controls without significant toxic effects. In conclusion, our study demonstrates the valuable potentials of PDPG for the specific delivery of siRNAs targeting HCC-related genes.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Galactose , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Mice , Polymers , RNA, Small Interfering
13.
Curr Med Chem ; 27(42): 7222-7233, 2020.
Article in English | MEDLINE | ID: mdl-32660396

ABSTRACT

BACKGROUND: Ovary Carcinoma (OC) is the most lethal gynecological neoplasm due to the late diagnoses and to the common development of resistance to platinum-based chemotherapy. Thus, novel therapeutic approaches are urgently required. In this regard, the strategy of drug repurposing is becoming attractive. By this approach, the effectiveness of a drug originally developed for another indication is tested in a different pathology. The advantage is that data about pharmacokinetic properties and toxicity are already available. Thus, in principle, it is possible to reduce research costs and to speed up drug usage/marketing. RESULTS: Here, some noticeable examples of repurposed drugs for OC, such as amiodarone, ruxolitinib, statins, disulfiram, ormeloxifenem, and Quinacrine, are reported. Amiodarone, an antiarrhythmic agent, has shown promising anti-OC activity, although the systemic toxicity should not be neglected. The JAK inhibitor, Ruxolitinib, may be employed particularly in coadministration with standard OC therapy as it synergistically interacts with platinum-based drugs. Particularly interesting is the use of statin which represent one of the most commonly administered drugs in aged population to treat hypercholesterolemia. Disulfiram, employed in the treatment of chronic alcoholism, has shown anti-OC properties. Ormeloxifene, commonly used for contraception, seems to be promising, especially due to the negligible side effects. Finally, Quinacrine used as an antimicrobial and anti-inflammatory drug, is able to downregulate OC cell growth and promote cell death. CONCLUSION: Whereas further testing in patients are necessary to better clarify the therapeutic potential of repurposed drugs for OC, it is believed that their use, better if combined with OC targeted delivery systems, can significantly contribute to the development of novel and effective anti-OC treatments.


Subject(s)
Drug Repositioning , Ovarian Neoplasms , Antineoplastic Agents/therapeutic use , Disulfiram , Female , Humans , Ovarian Neoplasms/drug therapy , Pharmaceutical Preparations
14.
Int J Pharm ; 574: 118895, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31862491

ABSTRACT

BACKGROUND: The effectiveness of therapies for chronic lymphocytic leukemia (CLL), the most common leukemia in Western countries adults, can be improved via a deeper understanding of its molecular abnormalities. Whereas the isoforms of the eukaryotic elongation factor 1A (eEF1A1 and eEF1A2) are implicated in different tumors, no information are available in CLL. METHODS: eEF1A1/eEF1A2 amounts were quantitated in the lymphocytes of 46 CLL patients vs normal control (real time PCR, western blotting). eEF1A1 role in CLL was investigated in a cellular (MEC-1) and animal model of CLL via its targeting by an aptamer (GT75) or a siRNA (siA1) delivered by electroporation (in vitro) or lipofection (in vivo). RESULTS: eEF1A1/eEF1A2 were elevated in CLL lymphocytes vs control. eEF1A1 but not eEF1A2 levels were higher in patients which died during the study compared to those surviving. eEF1A1 targeting (GT75/siA1) resulted in MEC-1 viability reduction/autophagy stimulation and in vivo tumor growth down-regulation. CONCLUSIONS: The increase of eEF1A1 in dead vs surviving patients may confer to eEF1A1 the role of a prognostic marker for CLL and possibly of a therapeutic target, given its involvement in MEC-1 survival. Specific aptamer/siRNA released by optimized delivery systems may allow the development of novel therapeutic options.


Subject(s)
Aptamers, Nucleotide/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Peptide Elongation Factor 1/genetics , RNA, Small Interfering/genetics , Aged , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Female , Humans , Male , Mice , Mice, SCID , Protein Isoforms/genetics
15.
Magn Reson Med ; 84(1): 427-436, 2020 07.
Article in English | MEDLINE | ID: mdl-31788856

ABSTRACT

PURPOSE: To develop a novel approach to monitor lung ventilation/inflammation in cystic fibrosis (CF) patients. Lung assessment in CF patients is relevant given that most patients succumb to respiratory failure. Respiratory functional tests (forced expiratory volume in the first second; FEV1 ) and inflammatory markers are used to test pulmonary ventilation/inflammation, respectively. However, FEV1 is effort dependent and might be uncomfortable for CF patients. Furthermore, inflammatory marker detection is costly and not rapid. To overcome these limitations, we propose the measurement, by means of low field nuclear magnetic resonance, of the spin-spin relaxation time (T2m ) of water hydrogens present in CF patient sputum. In CF sputum, different biological components are pathologically increased and inversely related to lung functionality. Moreover, we showed that these components alter in a dose-dependent manner the T2m in synthetic CF sputum. METHODS: Sputum samples were obtained from 42 CF subjects by voluntary expectoration; FEV1 , C-reactive protein (CRP), blood neutrophil counts together with cytokine (tumor necrosis factor alpha [TNFα], interleukin [IL]-1ß, IL-4, and vascular endothelial growth factor) quantifications were then evaluated. RESULTS: In sputum samples, we observe that T2m directly correlates (rFEV1 = 0.44; P < 10-4 ; 169 samples) with FEV1 . Moreover, T2m inversely correlates with the circulating inflammation markers CRP/neutrophil number (rCRP = -0.44, P < 10-4 ; rNC = -0.37, P < 2 * 10-4 ; 103 and 86 samples, respectively) and with the sputum inflammatory cytokines TNFα/IL-ß1 (rTNFα = -0.72, P < 10-4 ; rIL-1ß = -0.685, P < 10-4 ; 27 samples). T2m variations also correspond to FEV1 values over time in defined patients. CONCLUSION: These findings, together with the fast, reliable, and simple determination of T2m , make our approach a novel tool potentially usable in the real world of CF patients.


Subject(s)
Cystic Fibrosis , Pneumonia , Biomarkers , C-Reactive Protein , Cystic Fibrosis/diagnostic imaging , Cytokines , Humans , Inflammation , Magnetic Resonance Spectroscopy , Sputum , Vascular Endothelial Growth Factor A
16.
Pharmaceutics ; 11(10)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652539

ABSTRACT

The unmet need for novel therapeutic options for ovarian cancer (OC) deserves further investigation. Among the different novel drugs, small interfering RNAs (siRNAs) are particularly attractive because of their specificity of action and efficacy, as documented in many experimental setups. However, the fragility of these molecules in the biological environment necessitates the use of delivery materials able to protect them and possibly target them to the cancer cells. Among the different delivery materials, those based on polymers and lipids are considered very interesting because of their biocompatibility and ability to carry/deliver siRNAs. Despite these features, polymers and lipids need to be engineered to optimize their delivery properties for OC. In this review, we concentrated on the description of the therapeutic potential of siRNAs and polymer-/lipid-based delivery systems for OC. After a brief description of OC and siRNA features, we summarized the strategies employed to minimize siRNA delivery problems, the targeting strategies to OC, and the preclinical models available. Finally, we discussed the most interesting works published in the last three years about polymer-/lipid-based materials for siRNA delivery.

17.
J Pharm Biomed Anal ; 176: 112814, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31450069

ABSTRACT

BACKGROUND: The two isoforms of the eukaryotic Elongation Factor 1A (eEF1A1 and eEF1A2), sustain the progression/aggressiveness of cancer cells. Thus, they are considered promising therapeutic targets and prognostic markers. It follows that their precise quantification is of utmost relevance in research and development. The simultaneous quantification of A1 and A2 proteins in the cells helps the comprehension of cancer biology mechanisms and response to drug treatments. However, the high homology at the amino-acidic level (92%) can cause antibodies cross-reaction. Moreover, the commonly employed western blotting just gives semi-quantitative data and does not allow the detection of both protein targets within the same cell. Thus, we developed an in cell western (ICW) technique to bypass the above limitations. METHODS: Firstly, relevant antibodies cross-reaction was excluded by immunohistochemistry on normal pancreatic tissue; then eEF1A1-A2 protein levels were quantitated by ICW in prostate and colorectal cancer cell lines in 96 well plates under different conditions, which include: 1) drug treatment, 2) siRNA silencing, 3) cell seeding density. RESULTS: We show that: 1) eEF1A1-A2 levels vary depending on the cell type following drug treatment, 2) ICW can accurately detect eEF1A1-A2 protein levels following siRNA silencing, 3) cell seeding density influences eEF1A1-A2 levels, depending on cell type. CONCLUSIONS: ICW is a valuable tool to specifically determine the intracellular level of eEF1A1-A2 proteins thus contributing to better define their role as potential therapeutic targets and prognostic markers in human tumors as well as for drug effects screening.


Subject(s)
Blotting, Western/methods , Peptide Elongation Factor 1/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/isolation & purification , Biomarkers, Tumor/metabolism , Cell Culture Techniques/methods , Cell Line, Tumor , Humans , Intracellular Space/chemistry , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/pathology , Peptide Elongation Factor 1/antagonists & inhibitors , Peptide Elongation Factor 1/metabolism
19.
Front Physiol ; 9: 1000, 2018.
Article in English | MEDLINE | ID: mdl-30104982

ABSTRACT

In chronic diseases, hypoxia and physical inactivity are associated with atherosclerosis progression. In contrast, a lower mortality from coronary artery disease and stroke is observed in healthy humans residing at high altitude in hypoxic environments. Eleven young, male volunteers completed the following 10-day campaigns in a randomized order: hypoxic ambulatory, hypoxic bed rest and normoxic bed rest. Before intervention, subjects were evaluated in normoxic ambulatory condition. Normobaric hypoxia was achieved in a hypoxic facility simulating 4000 m of altitude. Following hypoxia, either in bed rest or ambulatory condition, markers of cardiometabolic risk shifted toward a more atherogenic pattern consisting of: (a) lower levels of total HDL cholesterol and HDL2 sub-fraction and decreased hepatic lipase; (b) activation of systemic inflammation, as determined by C-reactive protein and serum amyloid A; (c) increased plasma homocysteine; (d) decreased delta-5 desaturase index in cell membrane fatty acids, a marker of insulin sensitivity. Bed rest and hypoxia additively decreased total HDL and delta-5 desaturase index. In parallel to the pro-atherogenic effects, hypoxia activated selected anti-atherogenic pathways, consisting of increased circulating TNF-related apoptosis-inducing ligand (TRAIL), a protective factor against atherosclerosis, membrane omega-3 index and erythrocyte glutathione availability. Hypoxia mediated changes in TRAIL concentrations and redox glutathione capacity (i.e., GSH/GSSG ratio) were greater in ambulatory conditions (+34 ± 6% and +87 ± 31%, respectively) than in bed rest (+17 ± 7% and +2 ± 27% respectively). Hypoxia-induced cardiometabolic risk is blunted by moderate level of physical activity as compared to bed rest. TRAIL and glutathione redox capacity may contribute to the positive interaction between physical activity and hypoxia. Highlights: - Hypoxia and bed rest activate metabolic and inflammatory markers of atherogenesis. - Hypoxia and physical activity activate selected anti-atherogenic pathways. - Hypoxia and physical activity positive interaction involves TRAIL and glutathione.

20.
Molecules ; 23(4)2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29597300

ABSTRACT

Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD) and particularly small interfering RNAs (siRNAs), are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC), a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work.


Subject(s)
Carcinoma, Hepatocellular , Drug Delivery Systems/methods , Liver Neoplasms , Models, Biological , Polymers , RNA, Small Interfering , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Models, Chemical , Polymers/chemistry , Polymers/therapeutic use , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...