Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 19513, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26839261

ABSTRACT

Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal--applying common assumptions of elasticity, contact mechanics, and fluid dynamics--show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again.

2.
J Phys Condens Matter ; 26(35): 355002, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25046768

ABSTRACT

We systematically check explicit and implicit assumptions of Persson's contact mechanics theory. It casts the evolution of the pressure distribution Pr(p) with increasing resolution of surface roughness as a diffusive process, in which resolution plays the role of time. The tested key assumptions of the theory are: (a) the diffusion coefficient is independent of pressure p, (b) the diffusion process is drift-free at any value of p, (c) the point p = 0 acts as an absorbing barrier, i.e., once a point falls out of contact, it never re-enters again, (d) the Fourier component of the elastic energy is only populated if the appropriate wave vector is resolved, and (e) it no longer changes when even smaller wavelengths are resolved. Using high-resolution numerical simulations, we quantify deviations from these approximations and find quite significant discrepancies in some cases. For example, the drift becomes substantial for small values of p, which typically represent points in real space close to a contact line. On the other hand, there is a significant flux of points re-entering contact. These and other identified deviations cancel each other to a large degree, resulting in an overall excellent description for contact area, contact geometry, and gap distribution functions. Similar fortuitous error cancellations cannot be guaranteed under different circumstances, for instance when investigating rubber friction. The results of the simulations may provide guidelines for a systematic improvement of the theory.

3.
J Chem Phys ; 139(6): 064106, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23947842

ABSTRACT

Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.

4.
Phys Rev Lett ; 108(24): 244301, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-23004275

ABSTRACT

We study fluid flow at the interfaces between elastic solids with randomly rough, self-affine surfaces. We show by numerical simulation that elastic deformation lowers the relative contact area at which contact patches percolate in comparison to traditional approaches to seals. Elastic deformation also suppresses leakage through contacts even far away from the percolation threshold. Reliable estimates for leakage can be obtained by combining Persson's contact mechanics theory with a slightly modified version of Bruggeman's effective-medium solution of the Reynolds equation.

SELECTION OF CITATIONS
SEARCH DETAIL
...