Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 221: 435-445, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36067850

ABSTRACT

This study aims to develop chitosan-coated PLGA nanoparticles intended for nose-to-brain delivery of carmustine. Formulations were prepared by the double emulsion solvent evaporation method and optimized by using Box-Behnken Design. The optimized nanoparticles were obtained to satisfactory levels in terms of particle size, PDI, entrapment efficiency, and drug loading. In vitro drug release and ex-vivo permeation showed sustained release and enhanced permeability (approx. 2 fold) of carmustine compared to drug suspension. The AUC0-t of brain obtained with carmustine-loaded nanoparticles via nasal administration in Albino Wistar rats was 2.8 and 14.7 times that of intranasal carmustine suspension and intravenous carmustine, respectively. The MTT assay on U87 MG cell line showed a significant decrease (P < 0.05) in the IC50 value of the formulation (71.23 µg ml-1) as compared to drug suspension (90.02 µg ml-1).These findings suggest chitosan coated nanoparticles could be used to deliver carmustine via intranasal administration to treat Glioblastoma multiforme.


Subject(s)
Chitosan , Glioblastoma , Nanoparticles , Animals , Rats , Administration, Intranasal , Chitosan/metabolism , Carmustine/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Drug Carriers/metabolism , Brain/metabolism , Particle Size , Rats, Wistar , Drug Delivery Systems/methods
2.
ACS Omega ; 5(12): 6376-6388, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32258872

ABSTRACT

Growing antibiotic resistance has become a major health problem and has encouraged many researchers to find an alternative class of antibiotics. Combination therapy (covalent/noncovalent) is supposed to increase antibacterial activity leading to a decrease in administration dosage, thus lowering the risk of adverse side effects. The covalent coupling sometimes leads to instability and loss in the structure of AMPs. Therefore, herein, we have reported innovative research involving the noncovalent coupling of melittin (MEL), an antimicrobial peptide with a series of synthesized less toxic pyrrolidinium-based ionic liquids (ILs) for which MTT assay was performed. The antibacterial results of conjugates showed remarkable improvement in the MIC value as compared to MEL and ILs alone against Escherichia coli and Staphylococcus aureus . In addition, hemocompatibility results suggested good selectivity of the noncovalent conjugate as a potential antibiotic agent. Further, the docking study was employed to acquire the most favorable conformation of MEL in the presence of ILs. The best possible complex was further studied using various spectroscopic techniques, which showed appreciable binding and stability of the complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...