Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 21(1): 161, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32059637

ABSTRACT

BACKGROUND: Exploration of the bioactive components of bovine milk has gained global interest due to their potential applications in human nutrition and health promotion. Despite advances in proteomics profiling, limited studies have been carried out to fully characterize the bovine milk proteome. This study explored the milk proteome of Jersey and Kashmiri cattle at day 90 of lactation using high-resolution mass spectrometry based quantitative proteomics nano-scale LC-MS/Q-TOF technique. Data are available via ProteomeXchange with identifier PXD017412. RESULTS: Proteins from whey were fractionated by precipitation into high and low abundant proteins. A total of 81 high-abundant and 99 low-abundant proteins were significantly differentially expressed between Kashmiri and Jersey cattle, clearly differentiating the two breeds at the proteome level. Among the top differentiating proteins, the Kashmiri cattle milk proteome was characterised by increased concentrations of immune-related proteins (apelin, acid glycoprotein, CD14 antigen), neonatal developmental protein (probetacellulin), xenobiotic metabolising enzyme (flavin monooxygenase 3 (FMO3), GLYCAM1 and HSP90AA1 (chaperone) while the Jersey milk proteome presented higher concentrations of enzyme modulators (SERPINA1, RAC1, serine peptidase inhibitor) and hydrolases (LTF, LPL, CYM, PNLIPRP2). Pathway analysis in Kashmiri cattle revealed enrichment of key pathways involved in the regulation of mammary gland development like Wnt signalling pathway, EGF receptor signalling pathway and FGF signalling pathway while a pathway (T-cell activation pathway) associated with immune system regulation was significantly enriched in Jersey cattle. Most importantly, the high-abundant FMO3 enzyme with an observed 17-fold higher expression in Kashmiri cattle milk seems to be a characteristic feature of the breed. The presence of this (FMO3) bioactive peptide/enzyme in Kashmiri cattle could be economically advantageous for milk products from Kashmiri cattle. CONCLUSION: In conclusion, this is the first study to provide insights not only into the milk proteome differences between Kashmiri and Jersey cattle but also provides potential directions for application of specific milk proteins from Kashmiri cattle in special milk preparations like infant formula.


Subject(s)
Food Quality , Immune System/metabolism , Immunomodulation , Milk Proteins/metabolism , Proteome , Proteomics , Animals , Cattle , Chromatography, Liquid , Computational Biology/methods , Food Analysis , Gene Ontology , Proteomics/methods , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...